Send to

Choose Destination
See comment in PubMed Commons below
J Biol Chem. 1989 Aug 5;264(22):13171-80.

In vitro clustering and multiple fusion among macrophage endosomes.

Author information

Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri 63110.


Early steps of receptor-mediated endocytosis appear to require the fusion of endosomes with each other. Recently, these fusion events have been reconstituted in vitro using vesicle preparations from J774 macrophages which have internalized ligands via the mannose receptor (Diaz, R., Mayorga, L., and Stahl, P. (1988) J. Biol. Chem. 263, 6093-6100). The present studies indicate that endosomes first form clusters when incubated under fusogenic conditions. Aggregation state was determined by electron microscopy using vesicles containing ligand-coated colloidal gold of different sizes previously internalized via the mannose receptor. Aggregation required cytosol and ATP. Afterwards, the limiting membranes of the vesicles composing these aggregates undergo multiple fusion and bring about the formation of large diameter vesicles that maintained the same density as endosomes when analyzed by Percoll gradient sedimentation. These large diameter vesicles were no longer fusogenic in the fusion assay. Multiple fusion was determined morphologically by the co-localization of three different size colloidal gold vesicles inside endocytic vesicles and biochemically by the fusion-dependent formation of triple immune complexes between three endocytic ligands internalized by receptor-mediated endocytosis: anti-dinitrophenol mouse IgG and dinitrophenol-derivatized beta-glucuronidase, ligands for the mannose receptor, and aggregated rabbit anti-mouse IgG, a ligand for the macrophage Fc receptor.

[Indexed for MEDLINE]
Free full text
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center