Format

Send to

Choose Destination
J Neurophysiol. 2016 Oct 1;116(4):1946-1955. doi: 10.1152/jn.00085.2016. Epub 2016 Aug 17.

The inferior olive is essential for long-term maintenance of a simple motor skill.

Chen XY1,2,3, Wang Y4,3, Chen Y4,3, Chen L4,3, Wolpaw JR4,2,3,5.

Author information

1
National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York; xiangyang.chen@health.ny.gov.
2
Department of Biomedical Sciences, State University of New York, Albany, New York.
3
Albany Stratton Department of Veterans Affairs Medical Center, Albany, New York; and.
4
National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, New York.
5
Department of Neurology, Columbia University, College of Physicians and Surgeons, New York, New York.

Abstract

The inferior olive (IO) is essential for operant down-conditioning of the rat soleus H-reflex, a simple motor skill. To evaluate the role of the IO in long-term maintenance of this skill, the H-reflex was down-conditioned over 50 days, the IO was chemically ablated, and down-conditioning continued for up to 102 more days. H-reflex size just before IO ablation averaged 62(±2 SE)% of its initial value (P < 0.001 vs. initial). After IO ablation, H-reflex size rose to 75-80% over ∼10 days, remained there for ∼30 days, rose over 10 days to above its initial value, and averaged 140(±14)% for the final 10 days of study (P < 0.01 vs. initial). This two-stage loss of down-conditioning maintenance correlated with IO neuronal loss (r = 0.75, P < 0.01) and was similar to the loss of down-conditioning that follows ablation of the cerebellar output nuclei dentate and interpositus. In control (i.e., unconditioned) rats, IO ablation has no long-term effect on H-reflex size. These results indicate that the IO is essential for long-term maintenance of a down-conditioned H-reflex. With previous data, they support the hypothesis that IO and cortical inputs to cerebellum combine to produce cerebellar plasticity that produces sensorimotor cortex plasticity that produces spinal cord plasticity that produces the smaller H-reflex. H-reflex down-conditioning appears to depend on a hierarchy of plasticity that may be guided by the IO and begin in the cerebellum. Similar hierarchies may underlie other motor learning.

KEYWORDS:

H-reflex; cerebellum; learning; memory; operant conditioning; plasticity; sensorimotor cortex; spinal cord

PMID:
27535367
PMCID:
PMC5144694
DOI:
10.1152/jn.00085.2016
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Atypon Icon for PubMed Central
Loading ...
Support Center