Send to

Choose Destination
Food Funct. 2016 Sep 14;7(9):3760-71. doi: 10.1039/c6fo00462h. Epub 2016 Aug 17.

Short-term beef consumption promotes systemic oxidative stress, TMAO formation and inflammation in rats, and dietary fat content modulates these effects.

Author information

Laboratory for Animal Nutrition and Animal Product Quality, Department of Animal Production, Ghent University, Melle, Belgium.


A high consumption of red and/or processed meat is associated with a higher risk to develop several chronic diseases in which oxidative stress, trimethylamine-N-oxide (TMAO) and/or inflammation are involved. We aimed to elucidate the effect of white (chicken) vs. red (beef) meat consumption in a low vs. high dietary fat context (2 × 2 factorial design) on oxidative stress, TMAO and inflammation in Sprague-Dawley rats. Higher malondialdehyde (MDA) concentrations were found in gastrointestinal contents (up to 96% higher) and colonic tissues (+8.8%) of rats fed the beef diets (all P < 0.05). The lean beef diet resulted in lower blood glutathione, higher urinary excretion of the major 4-hydroxy-nonenal metabolite, and higher plasma C-reactive protein, compared to the other dietary treatments (all P < 0.05). Rats on the fat beef diet had higher renal MDA (+24.4% compared to all other diets) and heart MDA (+12.9% compared to lean chicken) and lower liver vitamin E (-26.2% compared to lean chicken) (all P < 0.05). Rats on the fat diets had lower plasma vitamin E (-23.8%), lower brain MDA (-6.8%) and higher plasma superoxide dismutase activity (+38.6%), higher blood glutathione (+16.9%) (all P < 0.05) and tendency to higher ventral prostate MDA (+14.5%, P = 0.078) and prostate weight (+18.9%, P = 0.073), compared to rats on the lean diets. Consumption of the beef diets resulted in higher urinary trimethylamine (4.5-fold) and TMAO (3.7-fold) concentrations (P < 0.001), compared to the chicken diets. In conclusion, consumption of a high beef diet may stimulate gastrointestinal and/or systemic oxidative stress, TMAO formation and inflammation, depending on the dietary fat content and composition.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center