Format

Send to

Choose Destination
Mol Cancer Ther. 2016 Nov;15(11):2653-2664. Epub 2016 Aug 16.

Reactive Oxygen Species Mediates the Synergistic Activity of Fenretinide Combined with the Microtubule Inhibitor ABT-751 against Multidrug-Resistant Recurrent Neuroblastoma Xenografts.

Author information

1
Department of Systems, Biology, and Disease, University of Southern California School of Medicine, Los Angeles, California.
2
Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, California.
3
Department of Pathology, Children's Hospital Los Angeles, Los Angeles, California.
4
Cancer Center and Department of Cell Biology and Biochemistry, Pediatrics and Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas.
5
Cancer Center and Department of Cell Biology and Biochemistry, Pediatrics and Internal Medicine, Texas Tech University Health Sciences Center School of Medicine, Lubbock, Texas. patrick.reynolds@ttuhsc.edu.

Abstract

ABT-751 is a colchicine-binding site microtubule inhibitor. Fenretinide (4-HPR) is a synthetic retinoid. Both agents have shown activity against neuroblastoma in laboratory models and clinical trials. We investigated the antitumor activity of 4-HPR + the microtubule-targeting agents ABT-751, vincristine, paclitaxel, vinorelbine, or colchicine in laboratory models of recurrent neuroblastoma. Drug cytotoxicity was assessed in vitro by a fluorescence-based assay (DIMSCAN) and in subcutaneous xenografts in nu/nu mice. Reactive oxygen species levels (ROS), apoptosis, and mitochondrial depolarization were measured by flow cytometry; cytochrome c release and proapoptotic proteins were measured by immunoblotting. 4-HPR + ABT-751 showed modest additive or synergistic cytotoxicity, mitochondrial membrane depolarization, cytochrome c release, and caspase activation compared with single agents in vitro; synergism was inhibited by antioxidants (ascorbic acid, α-tocopherol). 4-HPR + ABT-751 was highly active against four xenograft models, achieving multiple maintained complete responses. The median event-free survival (days) for xenografts from 4 patients combined was control = 28, 4-HPR = 49, ABT-751 = 77, and 4-HPR + ABT-751 > 150 (P < 0.001). Apoptosis (terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling, TUNEL) was significantly higher in 4-HPR + ABT-751-treated tumors than with single agents (P < 0.01) and was inhibited by ascorbic acid and α-tocopherol (P < 0.01), indicating that ROS from 4-HPR enhanced the activity of ABT-751. 4-HPR also enhanced the activity against neuroblastoma xenografts of vincristine or paclitaxel, but the latter combinations were less active than 4-HPR + ABT-751. Our data support clinical evaluation of 4-HPR combined with ABT-751 in recurrent and refractory neuroblastoma. Mol Cancer Ther; 15(11); 2653-64.

PMID:
27530131
DOI:
10.1158/1535-7163.MCT-16-0156
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center