Mechanical properties and failure behaviors of the interface of hybrid graphene/hexagonal boron nitride sheets

Sci Rep. 2016 Aug 16:6:31499. doi: 10.1038/srep31499.

Abstract

Hybrid graphene/h-BN sheet has been fabricated recently and verified to possess unusual physical properties. During the growth process, defects such as vacancies are unavoidably present at the interface between graphene and h-BN. In the present work, typical vacancy defects, which were located at the interface between graphene and h-BN, were studied by density functional theory. The interface structure, mechanical and electronic properties, and failure behavior of the hybrid graphene/h-BN sheet were investigated and compared. The results showed that the formation energy of the defective graphene/h-BN interface basically increased with increasing inflection angles. However, Young's modulus for all graphene/h-BN systems studied decreased with the increase in inflection angles. The intrinsic strength of the hybrid graphene/h-BN sheets was affected not only by the inflection angles, but also by the type of interface connection and the type of defects. The energy band structure of the hybrid interface could be tuned by applying mechanical strain to the systems. These results demonstrated that vacancies introduced significant effects on the mechanical and electronic properties of the hybrid graphene/h-BN sheet.

Publication types

  • Research Support, Non-U.S. Gov't