Format

Send to

Choose Destination
J Craniomaxillofac Surg. 2016 Sep;44(9):1387-94. doi: 10.1016/j.jcms.2016.07.015. Epub 2016 Jul 22.

Severe compromise of preosteoblasts in a surgical mouse model of bisphosphonate-associated osteonecrosis of the jaw.

Author information

1
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; Department of Oral and Maxillofacial Surgery, San Borja Arriarán University Hospital - Faculty of Dentistry, University of Chile, Sergio Livingstone Polhammer 943, Independencia, Santiago, Chile. Electronic address: lcordova@stanford.edu.
2
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: florian.guilbaud@univ-nantes.fr.
3
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: jerome.amiaud@univ-nantes.fr.
4
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: severine.battaglia@univ-nantes.fr.
5
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: celine.charrier@univ-nantes.fr.
6
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: frederic-lezot@univ-nantes.fr.
7
Department of Stomatology and Maxillofacial Surgery, Nantes University Hospital, 1 Place Alexis-Ricordeau, 44093, Nantes Cedex 1, France; Nantes University Hospital, 1 Place Alexis-Ricordeau, 44093, Nantes Cedex 1, France. Electronic address: benoit.piot@chu-nantes.fr.
8
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France. Electronic address: francoise.redini@univ-nantes.fr.
9
INSERM, UMR 957, Equipe Ligue Contre le Cancer 2012, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; University of Nantes, Nantes Atlantique Universities, Pathophysiology of Bone Resorption and Therapy of Primary Bone Tumours Laboratory, 1 rue Gaston Veil, Nantes Cedex 1, 44035, Nantes, France; Nantes University Hospital, 1 Place Alexis-Ricordeau, 44093, Nantes Cedex 1, France; Department of Oncology and Metabolism, Medical School, Beech Hill Road, S10 2RX, Sheffield, UK. Electronic address: dominique.heymann@sheffield.ac.uk.

Abstract

OBJECTIVES:

The effect of amino-bisphosphonates on osteoblastic lineage and its potential contribution to the pathogenesis of bisphosphonate-associated osteonecrosis of the jaw (BONJ) remain controversial. We assessed the effects of zoledronic acid (ZOL) on bone and vascular cells of the alveolar socket using a mouse model of BONJ.

MATERIAL AND METHODS:

Thirty-two mice were treated twice a week with either 100 μg/kg of ZOL or saline for 12 weeks. The first left maxillary molar was extracted at the third week. Alveolar sockets were assessed at both 3 weeks (intermediate) and 9 weeks (long-term) after molar extraction by semi-quantitative histomorphometry for empty lacunae, preosteoblasts (Osterix), osteoclasts (TRAP), and pericyte-like cells (CD146). Also, the bone microarchitecture was assessed by micro-CT.

RESULTS:

Osteonecrotic-like lesions were observed in 21% of mice. Moreover, a decreased number of preosteoblasts contrasted with the increased number of osteoclasts at both time points. In addition, osteoclasts display multinucleation and detachment from the endosteal surface. Furthermore, the number of pericyte-like cells increased at the intermediate time point. The alveolar bone mass increased exclusively with long-term ZOL treatment.

CONCLUSION:

The severe imbalance between bone-forming cells and bone-resorbing cells shown in this study could contribute to the pathogenesis of BONJ.

KEYWORDS:

Alveolar bone; Basic multicellular unit; Osteoblast; Osteoclast; Osteonecrosis of the jaw; Zoledronic acid

PMID:
27519659
DOI:
10.1016/j.jcms.2016.07.015
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science Icon for White Rose Research Online
Loading ...
Support Center