Format

Send to

Choose Destination
Mol Ther Methods Clin Dev. 2016 Jul 20;3:16050. doi: 10.1038/mtm.2016.50. eCollection 2016.

Investigating the functionality of an OCT4-short response element in human induced pluripotent stem cells.

Author information

1
Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA.
2
Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California , Los Angeles, alifornia, USA.
3
Department of Molecular and Medical Pharmacology, Center for Health Sciences, University of California, Los Angeles, alifornia, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, alifornia, USA; Department of Surgery, UCLA, Los Angeles, California, USA; Department of Medicine, UCLA, Los Angeles, California USA; Department of Psychiatry, Los Angeles, California USA; Department of Urology, UCLA, Los Angeles, California USA; The Intellectual and Developmental Disabilities Research Center at UCLA, Los Angeles, California USA; The Semel Institute for Neuroscience, Los Angeles, California USA.

Abstract

Pluripotent stem cells offer great therapeutic promise for personalized treatment platforms for numerous injuries, disorders, and diseases. Octamer-binding transcription factor 4 (OCT4) is a key regulatory gene maintaining pluripotency and self-renewal of mammalian cells. With site-specific integration for gene correction in cellular therapeutics, use of the OCT4 promoter may have advantages when expressing a suicide gene if pluripotency remains. However, the human OCT4 promoter region is 4 kb in size, limiting the capacity of therapeutic genes and other regulatory components for viral vectors, and decreasing the efficiency of homologous recombination. The purpose of this investigation was to characterize the functionality of a novel 967bp OCT4-short response element during pluripotency and to examine the OCT4 titer-dependent response during differentiation to human derivatives not expressing OCT4. Our findings demonstrate that the OCT4-short response element is active in pluripotency and this activity is in high correlation with transgene expression in vitro, and the OCT4-short response element is inactivated when pluripotent cells differentiate. These studies demonstrate that this shortened OCT4 regulatory element is functional and may be useful as part of an optimized safety component in a site-specific gene transferring system that could be used as an efficient and clinically applicable safety platform for gene transfer in cellular therapeutics.

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center