Send to

Choose Destination
See comment in PubMed Commons below
Chem Res Toxicol. 2016 Oct 17;29(10):1641-1650. Epub 2016 Sep 9.

Human Microdosing with Carcinogenic Polycyclic Aromatic Hydrocarbons: In Vivo Pharmacokinetics of Dibenzo[def,p]chrysene and Metabolites by UPLC Accelerator Mass Spectrometry.

Author information

  • 1Department of Environmental and Molecular Toxicology, Oregon State University , Corvallis, Oregon 97331, United States.
  • 2Superfund Research Program, Oregon State University , Corvallis, Oregon 97331, United States.
  • 3Center for Accelerator Mass Spectrometry, Lawrence Livermore National Laboratory , Livermore, California 94550, United States.
  • 4Systems Toxicology and Exposure Science, Pacific Northwest National Laboratory , Richland, Washington 99354, United States.
  • 5Biology and Biotechnology Research Division, Lawrence Livermore National Laboratory , Livermore, California 94550, United States.


Metabolism is a key health risk factor following exposures to pro-carcinogenic polycyclic aromatic hydrocarbons (PAHs) such as dibenzo[def,p]chrysene (DBC), an IARC classified 2A probable human carcinogen. Human exposure to PAHs occurs primarily from the diet in nonsmokers. However, little data is available on the metabolism and pharmacokinetics in humans of high molecular weight PAHs (≥4 aromatic rings), including DBC. We previously determined the pharmacokinetics of DBC in human volunteers orally administered a microdose (29 ng; 5 nCi) of [14C]-DBC by accelerator mass spectrometry (AMS) analysis of total [14C] in plasma and urine. In the current study, we utilized a novel "moving wire" interface between ultraperformance liquid chromatography (UPLC) and AMS to detect and quantify parent DBC and its major metabolites. The major [14C] product identified in plasma was unmetabolized [14C]-DBC itself (Cmax = 18.5 ±15.9 fg/mL, Tmax= 2.1 ± 1.0 h), whereas the major metabolite was identified as [14C]-(+/-)-DBC-11,12-diol (Cmax= 2.5 ±1.3 fg/mL, Tmax= 1.8 h). Several minor species of [14C]-DBC metabolites were also detected for which no reference standards were available. Free and conjugated metabolites were detected in urine with [14C]-(+/-)-DBC-11,12,13,14-tetraol isomers identified as the major metabolites, 56.3% of which were conjugated (Cmax= 35.8 ± 23.0 pg/pool, Tmax = 6-12 h pool). [14C]-DBC-11,12-diol, of which 97.5% was conjugated, was also identified in urine (Cmax = 29.4 ± 11.6 pg/pool, Tmax = 6-12 h pool). Parent [14C]-DBC was not detected in urine. This is the first data set to assess metabolite profiles and associated pharmacokinetics of a carcinogenic PAH in human volunteers at an environmentally relevant dose, providing the data necessary for translation of high dose animal models to humans for translation of environmental health risk assessment.

[PubMed - in process]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for American Chemical Society
    Loading ...
    Support Center