Send to

Choose Destination
Med Phys. 2016 Aug;43(8):4842. doi: 10.1118/1.4955434.

Modification and validation of an analytical source model for external beam radiotherapy Monte Carlo dose calculations.

Author information

Radiation Oncology, The University of Texas Medical Branch, Galveston, Texas 77555.
Radiation Oncology, University of Southern California, Los Angeles, California 90033.
Department of Radiation Physics, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.
Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York 10065.
Department of Applied Physics, University of Belgrade, Belgrade 11000, Serbia.
Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas 77030.



A dose calculation tool, which combines the accuracy of the dose planning method (DPM) Monte Carlo code and the versatility of a practical analytical multisource model, which was previously reported has been improved and validated for the Varian 6 and 10 MV linear accelerators (linacs). The calculation tool can be used to calculate doses in advanced clinical application studies. One shortcoming of current clinical trials that report dose from patient plans is the lack of a standardized dose calculation methodology. Because commercial treatment planning systems (TPSs) have their own dose calculation algorithms and the clinical trial participant who uses these systems is responsible for commissioning the beam model, variation exists in the reported calculated dose distributions. Today's modern linac is manufactured to tight specifications so that variability within a linac model is quite low. The expectation is that a single dose calculation tool for a specific linac model can be used to accurately recalculate dose from patient plans that have been submitted to the clinical trial community from any institution. The calculation tool would provide for a more meaningful outcome analysis.


The analytical source model was described by a primary point source, a secondary extra-focal source, and a contaminant electron source. Off-axis energy softening and fluence effects were also included. The additions of hyperbolic functions have been incorporated into the model to correct for the changes in output and in electron contamination with field size. A multileaf collimator (MLC) model is included to facilitate phantom and patient dose calculations. An offset to the MLC leaf positions was used to correct for the rudimentary assumed primary point source.


Dose calculations of the depth dose and profiles for field sizes 4 × 4 to 40 × 40 cm agree with measurement within 2% of the maximum dose or 2 mm distance to agreement (DTA) for 95% of the data points tested. The model was capable of predicting the depth of the maximum dose within 1 mm. Anthropomorphic phantom benchmark testing of modulated and patterned MLCs treatment plans showed agreement to measurement within 3% in target regions using thermoluminescent dosimeters (TLD). Using radiochromic film normalized to TLD, a gamma criteria of 3% of maximum dose and 2 mm DTA was applied with a pass rate of least 85% in the high dose, high gradient, and low dose regions. Finally, recalculations of patient plans using DPM showed good agreement relative to a commercial TPS when comparing dose volume histograms and 2D dose distributions.


A unique analytical source model coupled to the dose planning method Monte Carlo dose calculation code has been modified and validated using basic beam data and anthropomorphic phantom measurement. While this tool can be applied in general use for a particular linac model, specifically it was developed to provide a singular methodology to independently assess treatment plan dose distributions from those clinical institutions participating in National Cancer Institute trials.

[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Wiley Icon for PubMed Central
Loading ...
Support Center