Rhox13 is required for a quantitatively normal first wave of spermatogenesis in mice

Reproduction. 2016 Nov;152(5):379-88. doi: 10.1530/REP-16-0268. Epub 2016 Aug 2.

Abstract

We previously described a novel germ cell-specific X-linked reproductive homeobox gene (Rhox13) that is upregulated at the level of translation in response to retinoic acid (RA) in differentiating spermatogonia and preleptotene spermatocytes. We hypothesize that RHOX13 plays an essential role in male germ cell differentiation, and have tested this by creating a Rhox13 gene knockout (KO) mouse. Rhox13 KO mice are born in expected Mendelian ratios, and adults have slightly reduced testis weights, yet a full complement of spermatogenic cell types. Young KO mice (at ~7-8 weeks of age) have a ≈50% reduction in epididymal sperm counts, but numbers increased to WT levels as the mice reach ~17 weeks of age. Histological analysis of testes from juvenile KO mice reveals a number of defects during the first wave of spermatogenesis. These include increased apoptosis, delayed appearance of round spermatids and disruption of the precise stage-specific association of germ cells within the seminiferous tubules. Breeding studies reveal that both young and aged KO males produce normal-sized litters. Taken together, our results indicate that RHOX13 is not essential for mouse fertility in a controlled laboratory setting, but that it is required for optimal development of differentiating germ cells and progression of the first wave of spermatogenesis.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, N.I.H., Intramural

MeSH terms

  • Animals
  • Apoptosis*
  • Cell Differentiation
  • Cell Proliferation
  • Cells, Cultured
  • Epididymis / cytology*
  • Female
  • Fertilization / physiology*
  • Homeodomain Proteins / physiology*
  • Male
  • Mice
  • Mice, Inbred C57BL
  • Mice, Knockout
  • Spermatocytes / cytology*
  • Spermatogenesis / physiology*

Substances

  • Homeodomain Proteins
  • Rhox13 protein, mouse