Format

Send to

Choose Destination
Sci Rep. 2016 Aug 3;6:30898. doi: 10.1038/srep30898.

Functional Recovery from Neural Stem/Progenitor Cell Transplantation Combined with Treadmill Training in Mice with Chronic Spinal Cord Injury.

Author information

1
Department of Rehabilitation Medicine, Keio University School of Medicine, Tokyo, Japan.
2
Department of Orthopaedic Surgery, Keio University School of Medicine, Tokyo, Japan.
3
Department of Physiology, Keio University School of Medicine, Tokyo, Japan.
4
Department of Neuroscience, City College of the City University of New York, NY, USA.

Abstract

Most studies targeting chronic spinal cord injury (SCI) have concluded that neural stem/progenitor cell (NS/PC) transplantation exerts only a subclinical recovery; this in contrast to its remarkable effect on acute and subacute SCI. To determine whether the addition of rehabilitative intervention enhances the effect of NS/PC transplantation for chronic SCI, we used thoracic SCI mouse models to compare manifestations secondary to both transplantation and treadmill training, and the two therapies combined, with a control group. Significant locomotor recovery in comparison with the control group was only achieved in the combined therapy group. Further investigation revealed that NS/PC transplantation improved spinal conductivity and central pattern generator activity, and that treadmill training promoted the appropriate inhibitory motor control. The combined therapy enhanced these independent effects of each single therapy, and facilitated neuronal differentiation of transplanted cells and maturation of central pattern generator activity synergistically. Our data suggest that rehabilitative treatment represents a therapeutic option for locomotor recovery after NS/PC transplantation, even in chronic SCI.

PMID:
27485458
PMCID:
PMC4971501
DOI:
10.1038/srep30898
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center