Format

Send to

Choose Destination
Sci Rep. 2016 Aug 2;6:30912. doi: 10.1038/srep30912.

Disruption of dmc1 Produces Abnormal Sperm in Medaka (Oryzias latipes).

Author information

1
State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, No. 7 Donghu South Road, Wuhan 430072, China.
2
University of Chinese Academy of Sciences, Beijing 100049, China.
3
Department of Genetics, School of Basic Medical Sciences, Wuhan University, No. 185 Donghu East Road, Wuhan 430071, China.

Abstract

DMC1 is a recombinase that is essential for meiotic synapsis. Experiments in extensive species of eukaryotes have indicated the independent role of DMC1 in repairing double strand breaks (DSBs) produced during meiosis I. Mutation of dmc1 in mice and human often leads to obstacles in spermatogenesis and male sterility. Here, we report on the disruption of dmc1 in male medaka (Oryzias latipes). Synapsis was disturbed in the mutant medaka testis nuclei, as observed in mice and other organisms. Unexpectedly, the mutant medaka could produce a few sperm and, although most of these had multiple tail or multiple head malformations, some of them could swim, and few of them even had insemination ability. Our transcriptome analysis showed that there was not a remarkable change in the expression of most of the genes involved in the pathways associated with the meiotic DNA repair and flagella assembly. Our results provided an indication of the accessory mechanisms that might be involved in the repair of DSBs during meiosis. In a species besides humans, we provided evidence that disorders in meiosis recombination might lead to the malformation of sperm.

PMID:
27480068
PMCID:
PMC4969596
DOI:
10.1038/srep30912
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center