Format

Send to

Choose Destination
Biomed Pharmacother. 2016 Oct;83:676-686. doi: 10.1016/j.biopha.2016.07.020. Epub 2016 Jul 29.

Urtica dioica leaves modulates hippocampal smoothened-glioma associated oncogene-1 pathway and cognitive dysfunction in chronically stressed mice.

Author information

1
Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India.
2
Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India; School of Pharmaceutical Sciences, Shoolini University, Solan, 173229, Himachal Pradesh, India.
3
Department of Pharmacy, Jaypee University of Information Technology, Waknaghat, 173234, Himachal Pradesh, India. Electronic address: m_udayabanu@rediffmail.com.

Abstract

The present study was aimed to evaluate the effect of Urtica dioica (UD) extract against chronic unpredictable stress (CUS)-induced associative memory dysfunction and attempted to explore the possible mechanism. Male Swiss albino mice (25-30g) were divided into six groups, viz. group-I received 0.3% carboxymethyl cellulose and served as control (CTRL), group II was exposed to CUS (21days) and received vehicle (CUS), group III was subjected to CUS and received Hypericum perforatum extract (350mg/kg, p.o.) (CUS+HYP), group IV received Hypericum perforatum extract (350mg/kg, p.o.) (CTRL+HYP); group V was subjected to CUS and received UD extract (50mg/kg, p.o.) (CUS+UD), group VI received UD extract (50mg/kg, p.o.) (CTRL+UD). CUS significantly induced body weight loss (p<0.05) and associative memory impairment in step down task (p<0.05) as compared to control mice. CUS significantly downregulated Smo (p<0.05), Gli1 (p<0.01), cyclin D1 (p<0.05), BDNF (p<0.01), TrKB (p<0.01) and MAPK1 (p<0.01) mRNA expression in hippocampus as compared to control mice. CUS significantly increased the levels of TBARS (p<0.01) and nitric oxide (p<0.001), and decreased catalase (p<0.001) and total thiol (p<0.01) in plasma resulting in oxidative stress and inflammation. Chronic UD administration significantly reverted CUS mediated body weight loss (p<0.05) and cognitive impairment (p<0.05). UD administration significantly decreased the levels of TBARS (p<0.01) and nitric oxide (p<0.05), and increased the levels of catalase (p<0.01) and total thiol (p<0.05) in plasma. Chronic UD administration significantly upregulated hippocampal Smo (p<0.05), Gli1 (p<0.001), cyclin D1 (p<0.05), BDNF (p<0.05), TrKB (p<0.05) and MAPK1 (p<0.05) in stressed mice. Further, UD extract did not reverse cyclopamine induced downregulation of Gli1 and Ptch1 mRNA in hippocampal slices. UD modulated Smo-Gli1 pathway in the hippocampus as well as exerted anti-inflammatory and antioxidant effects. UD extract might prove to be effective for stress mediated neurological disorders.

KEYWORDS:

Chronic stress; Cognition; Hypericum perforatum; Sonic hedgehog; Urtica dioica

PMID:
27470568
DOI:
10.1016/j.biopha.2016.07.020
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center