Format

Send to

Choose Destination
J Glob Antimicrob Resist. 2016 Jun;5:26-30. doi: 10.1016/j.jgar.2016.01.010. Epub 2016 Mar 9.

Molecular characterisation of quinolone-resistant Shigella strains isolated in Tehran, Iran.

Author information

1
Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran. Electronic address: ranjbarre@gmail.com.
2
Department of Microbiology, Islamic Azad University, Damghan Branch, Damghan, Iran.
3
Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.
4
Molecular Biology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
5
Department of Sciences for Health Promotion and Mother-Child Care 'G. D'Alessandro', University of Palermo, Palermo, Italy.

Abstract

Over the past few years, the number of Shigella strains resistant to nalidixic acid has increased and has made the selection of effective antimicrobial therapy more difficult. The purpose of this study was to investigate the molecular mechanism of quinolone resistance in Shigella strains. Shigella strains isolated from 1100 diarrhoeal patients in Tehran, Iran, were assessed for their susceptibility to nalidixic acid prior to PCR-RFLP and sequence analysis of their quinolone resistance genes. Among 73 Shigella strains isolated, 23 (31.5%) were resistant to nalidixic acid. The most common Shigella spp. was Shigella sonnei (54; 74.0%). Of the 23 quinolone-resistant isolates, 4 (17.4%) (including 2 Shigella flexneri, 1 S. sonnei and 1 Shigella boydii) contained the qnrS gene. However, none of the isolates harboured qnrA or qnrB genes. PCR-RFLP analysis of gyrA showed a mutation profile in two nalidixic acid-resistant strains, including one S. sonnei and one S. flexneri. Sequencing of mutant gyrA genes revealed a point mutation at position 83, resulting in the replacement of serine by leucine. In conclusion, molecular mechanisms of resistance to quinolones were identified in 6 of 23 Shigella isolates. Other possible mechanisms of resistance should also be investigated for better characterisation of quinolone-resistant Shigella isolates.

KEYWORDS:

Mutation; Nalidixic acid; Quinolone resistance; Shigella; gyrA

PMID:
27436462
DOI:
10.1016/j.jgar.2016.01.010
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center