Format

Send to

Choose Destination
Epilepsy Behav Case Rep. 2016 Mar 9;6:13-8. doi: 10.1016/j.ebcr.2016.02.002. eCollection 2016.

Electrocorticographic mapping of expressive language function without requiring the patient to speak: A report of three cases.

Author information

1
National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA.
2
Department of Neurosurgery, Albany Medical College, Albany, NY, USA.
3
Department of Neurology, Albany Medical College, Albany, NY, USA.
4
National Center for Adaptive Neurotechnologies, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Biomedical Sciences, State University of New York at Albany, Albany, NY, USA; Department of Neurology, Albany Medical College, Albany, NY, USA.

Abstract

OBJECTIVE:

Patients requiring resective brain surgery often undergo functional brain mapping during perioperative planning to localize expressive language areas. Currently, all established protocols to perform such mapping require substantial time and patient participation during verb generation or similar tasks. These issues can make language mapping impractical in certain clinical circumstances (e.g., during awake craniotomies) or with certain populations (e.g., pediatric patients). Thus, it is important to develop new techniques that reduce mapping time and the requirement for active patient participation. Several neuroscientific studies reported that the mere auditory presentation of speech stimuli can engage not only receptive but also expressive language areas. Here, we tested the hypothesis that submission of electrocorticographic (ECoG) recordings during a short speech listening task to an appropriate analysis procedure can identify eloquent expressive language cortex without requiring the patient to speak.

METHODS:

Three patients undergoing temporary placement of subdural electrode grids passively listened to stories while we recorded their ECoG activity. We identified those sites whose activity in the broadband gamma range (70-170 Hz) changed immediately after presentation of the speech stimuli with respect to a prestimulus baseline.

RESULTS:

Our analyses revealed increased broadband gamma activity at distinct locations in the inferior frontal cortex, superior temporal gyrus, and/or perisylvian areas in all three patients and premotor and/or supplementary motor areas in two patients. The sites in the inferior frontal cortex that we identified with our procedure were either on or immediately adjacent to locations identified using electrical cortical stimulation (ECS) mapping.

CONCLUSIONS:

The results of this study provide encouraging preliminary evidence that it may be possible that a brief and practical protocol can identify expressive language areas without requiring the patient to speak. This protocol could provide the clinician with a map of expressive language cortex within a few minutes. This may be useful as an adjunct to ECS interrogation or as an alternative to mapping using functional magnetic resonance imaging (fMRI). In conclusion, with further development and validation in more subjects, the approach presented here could help in identifying expressive language areas in situations where patients cannot speak in response to task instructions.

KEYWORDS:

ECoG; Expressive language; Functional mapping; Gamma

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center