Format

Send to

Choose Destination
EMBO Mol Med. 2016 Aug 1;8(8):878-94. doi: 10.15252/emmm.201506030. Print 2016 Aug.

Oligonucleotide-induced alternative splicing of serotonin 2C receptor reduces food intake.

Author information

1
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA.
2
Department of Pharmacology, Vanderbilt University, Nashville, TN, USA.
3
Department of Molecular Physiology & Biophysics, Vanderbilt University, Nashville, TN, USA.
4
Spinal Cord & Brain Injury, Research Center, University of Kentucky, Lexington, KY, USA.
5
Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, USA stefan@stamms-lab.net.

Abstract

The serotonin 2C receptor regulates food uptake, and its activity is regulated by alternative pre-mRNA splicing. Alternative exon skipping is predicted to generate a truncated receptor protein isoform, whose existence was confirmed with a new antiserum. The truncated receptor sequesters the full-length receptor in intracellular membranes. We developed an oligonucleotide that promotes exon inclusion, which increases the ratio of the full-length to truncated receptor protein. Decreasing the amount of truncated receptor results in the accumulation of full-length, constitutively active receptor at the cell surface. After injection into the third ventricle of mice, the oligonucleotide accumulates in the arcuate nucleus, where it changes alternative splicing of the serotonin 2C receptor and increases pro-opiomelanocortin expression. Oligonucleotide injection reduced food intake in both wild-type and ob/ob mice. Unexpectedly, the oligonucleotide crossed the blood-brain barrier and its systemic delivery reduced food intake in wild-type mice. The physiological effect of the oligonucleotide suggests that a truncated splice variant regulates the activity of the serotonin 2C receptor, indicating that therapies aimed to change pre-mRNA processing could be useful to treat hyperphagia, characteristic for disorders like Prader-Willi syndrome.

KEYWORDS:

alternative splicing; brain function; food uptake; obesity; pre‐mRNA processing

PMID:
27406820
PMCID:
PMC4967942
DOI:
10.15252/emmm.201506030
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center