Send to

Choose Destination
See comment in PubMed Commons below
Pharmacol Biochem Behav. 1989 Mar;32(3):801-5.

MR/Har and MNRA/Har Maudsley rat strains: differential response to chlordiazepoxide in a conflict task.

Author information

Department of Pharmaceutical Sciences, College of Pharmacy & AHP, Wayne State University, Detroit, MI 48202.


The Maudsley Reactive (MR/Har) and Non-Reactive (MNRA/Har) rat strains, selectively bred for differences in open field defecation, have also been shown to differ in their baseline behavior in the Conditioned Suppression of Drinking (CSD) procedure, a second "model" behavior for the study of anxiety and/or emotionality in rats. The present studies were designed to compare the responsiveness of these two strains to the typical antianxiety agent chlordiazepoxide in the CSD paradigm. In daily 10-minute sessions, water-deprived rats were trained to drink from a tube that was occasionally electrified (0.5 mA), electrification being signaled by a tone. Consistent with previous reports, after several weeks of CSD testing, MNRA/Har rats accepted significantly more shocks than did MR/Har rats during control (nondrug) sessions. In both strains, the number of shocks accepted was inversely related to the intensity of the shock used (0.25-1.0 mA), with MNRA/Har rats accepting significantly more shocks than MR/Har rats at all intensities examined. The effects of various doses (1.25-28.4 mg/kg, IP) of chlordiazepoxide were determined in subjects of the MNRA/Har strain at the original training intensity (0.5 mA), while a lower intensity (0.25 mA) was utilized in MR/Har rats. Although punished responding in control (i.e., nondrug) CSD sessions did not differ under these conditions, MNRA/Har rats were found to be more responsive to the anticonflict effects of chlordiazepoxide than rats of the MR/Har strain. This strain difference in anticonflict efficacy of chlordiazepoxide was quite dramatic, with MNRA/Har rats accepting twice as many shocks as MR/Har rats following maximally effective doses of chlordiazepoxide. Low doses of chlordiazepoxide increased water intake slightly, while higher doses decreased water intake. Surprisingly, the chlordiazepoxide-induced depression of water intake was greater in rats of the MR/Har strain. Thus, these Maudsley Reactive and Non-Reactive rat strains, bred originally for their differences in open field behavior, also differ markedly in their responsiveness to chlordiazepoxide in the CSD paradigm. These findings further support the hypothesis that the MR/Har and MNRAHar rat strains may represent a genetically-based "animal model" for the study of emotionality and/or anxiety.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Elsevier Science
    Loading ...
    Support Center