Format

Send to

Choose Destination
Int J Sports Physiol Perform. 2017 Mar;12(3):402-409. doi: 10.1123/ijspp.2016-0186. Epub 2016 Aug 24.

Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy.

Abstract

PURPOSE:

To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage.

METHODS:

Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at -110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise.

RESULTS:

Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = -0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = -0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = -0.68; 90% CI = -1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = -0.62; 90% CI = -1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes.

CONCLUSIONS:

CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24-48 h postexercise.

KEYWORDS:

cold air; eccentric; fatigue

PMID:
27396361
DOI:
10.1123/ijspp.2016-0186
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center