Format

Send to

Choose Destination
Conserv Physiol. 2016 Jan 13;4(1):cov059. doi: 10.1093/conphys/cov059. eCollection 2016.

Fisheries conservation on the high seas: linking conservation physiology and fisheries ecology for the management of large pelagic fishes.

Author information

1
Department of Marine and Environmental Science, Hampton University, 100 East Queen Street, Hampton, VA 23668, USA.
2
Fish Ecology and Conservation Physiology Laboratory, Department of Biology and Institute of Environmental Science, Carleton University, 1125 Colonel By Drive, Ottawa, ON, Canada K1S 5B6.
3
Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA.
4
Department of Fisheries Science, Virginia Institute of Marine Science, College of William & Mary, Gloucester Point, VA 23062, USA; Behavioral Ecology Branch, James J. Howard Marine Sciences Laboratory, Northeast Fisheries Science Center, National Marine Fisheries Service, NOAA, Highlands, NJ 07732, USA.

Abstract

Populations of tunas, billfishes and pelagic sharks are fished at or over capacity in many regions of the world. They are captured by directed commercial and recreational fisheries (the latter of which often promote catch and release) or as incidental catch or bycatch in commercial fisheries. Population assessments of pelagic fishes typically incorporate catch-per-unit-effort time-series data from commercial and recreational fisheries; however, there have been notable changes in target species, areas fished and depth-specific gear deployments over the years that may have affected catchability. Some regional fisheries management organizations take into account the effects of time- and area-specific changes in the behaviours of fish and fishers, as well as fishing gear, to standardize catch-per-unit-effort indices and refine population estimates. However, estimates of changes in stock size over time may be very sensitive to underlying assumptions of the effects of oceanographic conditions and prey distribution on the horizontal and vertical movement patterns and distribution of pelagic fishes. Effective management and successful conservation of pelagic fishes requires a mechanistic understanding of their physiological and behavioural responses to environmental variability, potential for interaction with commercial and recreational fishing gear, and the capture process. The interdisciplinary field of conservation physiology can provide insights into pelagic fish demography and ecology (including environmental relationships and interspecific interactions) by uniting the complementary expertise and skills of fish physiologists and fisheries scientists. The iterative testing by one discipline of hypotheses generated by the other can span the fundamental-applied science continuum, leading to the development of robust insights supporting informed management. The resulting species-specific understanding of physiological abilities and tolerances can help to improve stock assessments, develop effective bycatch-reduction strategies, predict rates of post-release mortality, and forecast the population effects of environmental change. In this synthesis, we review several examples of these interdisciplinary collaborations that currently benefit pelagic fisheries management.

KEYWORDS:

Bycatch; Fry paradigm; cardiorespiratory; pelagic fishes; post-release survival

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center