Format

Send to

Choose Destination
Version 3. F1000Res. 2016 Apr 8 [revised 2016 Jun 22];5:606. doi: 10.12688/f1000research.8406.3. eCollection 2016.

Lovastatin lactone may improve irritable bowel syndrome with constipation (IBS-C) by inhibiting enzymes in the archaeal methanogenesis pathway.

Author information

1
Eidogen-Sertanty, Oceanside, CA, USA.
2
Synthetic Biologics, Rockville, MD, USA.
3
Cedars-Sinai Medical Center, Los Angeles, CA, USA.

Abstract

Methane produced by the methanoarchaeon Methanobrevibacter smithii ( M. smithii) has been linked to constipation, irritable bowel syndrome with constipation (IBS-C), and obesity. Lovastatin, which demonstrates a cholesterol-lowering effect by the inhibition of HMG-CoA reductase, may also have an anti-methanogenesis effect through direct inhibition of enzymes in the archaeal methanogenesis pathway. We conducted protein-ligand docking experiments to evaluate this possibility. Results are consistent with recent clinical findings.

METHODS:

F420-dependent methylenetetrahydromethanopterin dehydrogenase ( mtd), a key methanogenesis enzyme was modeled for two different methanogenic archaea: M. smithii and Methanopyrus kandleri. Once protein models were developed, ligand-binding sites were identified. Multiple ligands and their respective protonation, isomeric and tautomeric representations were docked into each site, including F420-coenzyme (natural ligand), lactone and β-hydroxyacid forms of lovastatin and simvastatin, and other co-complexed ligands found in related crystal structures.

RESULTS:

1) Generally, for each modeled site the lactone form of the statins had more favorable site interactions compared to F420; 2) The statin lactone forms generally had the most favorable docking scores, even relative to the native template PDB ligands; and 3) The statin β-hydroxyacid forms had less favorable docking scores, typically scoring in the middle with some of the F420 tautomeric forms. Consistent with these computational results were those from a recent phase II clinical trial ( NCT02495623) with a proprietary, modified-release lovastatin-lactone (SYN-010) in patients with IBS-C, which showed a reduction in symptoms and breath methane levels, compared to placebo.

CONCLUSION:

The lactone form of lovastatin exhibits preferential binding over the native-F420 coenzyme ligand in silico and thus could inhibit the activity of the key M. smithii methanogenesis enzyme mtd in vivo. Statin lactones may thus exert a methane-reducing effect that is distinct from cholesterol lowering activity, which requires HMGR inhibition by statin β-hydroxyacid forms.

KEYWORDS:

IBS; IBS-C; Lovastatin; homology modeling; multi-site docking

Supplemental Content

Full text links

Icon for F1000 Research Ltd Icon for PubMed Central
Loading ...
Support Center