Format

Send to

Choose Destination
Cell Rep. 2016 Jul 12;16(2):520-530. doi: 10.1016/j.celrep.2016.05.092. Epub 2016 Jun 23.

Decreased Consumption of Branched-Chain Amino Acids Improves Metabolic Health.

Author information

1
Division of Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Clinical and Experimental Sciences, University of Brescia Medical School, 25121 Brescia, Italy; CEINGE Biotecnologie Avanzate, 80145 Napoli, Italy. Electronic address: lfontana@dom.wustl.edu.
2
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
3
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA.
4
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
5
McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, Madison, WI 53705, USA.
6
Division of Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Experimental Medicine, Sapienza University of Rome, 00185 Rome, Italy.
7
Division of Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Medicine, University of Verona, 37129 Verona, Italy.
8
Division of Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Geriatrics, Department of Medicine, University of Padova, 35122 Padova, Italy.
9
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Rural and Urban Scholars in Community Health Program, University of Wisconsin-Madison, Madison, WI 53706, USA.
10
Division of Geriatrics and Nutritional Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
11
Division of Urology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110, USA.
12
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, WI 53706, USA.
13
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Department of Cell and Regenerative Biology, University of Wisconsin-Madison, Madison, WI 53705, USA.
14
Department of Medicine, University of Wisconsin-Madison, Madison, WI 53705, USA; William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA; Endocrinology and Reproductive Physiology Graduate Training Program, University of Wisconsin-Madison, Madison, WI 53706, USA; Interdisciplinary Graduate Program in Nutritional Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Rural and Urban Scholars in Community Health Program, University of Wisconsin-Madison, Madison, WI 53706, USA. Electronic address: dlamming@medicine.wisc.edu.

Abstract

Protein-restricted (PR), high-carbohydrate diets improve metabolic health in rodents, yet the precise dietary components that are responsible for these effects have not been identified. Furthermore, the applicability of these studies to humans is unclear. Here, we demonstrate in a randomized controlled trial that a moderate PR diet also improves markers of metabolic health in humans. Intriguingly, we find that feeding mice a diet specifically reduced in branched-chain amino acids (BCAAs) is sufficient to improve glucose tolerance and body composition equivalently to a PR diet via metabolically distinct pathways. Our results highlight a critical role for dietary quality at the level of amino acids in the maintenance of metabolic health and suggest that diets specifically reduced in BCAAs, or pharmacological interventions in this pathway, may offer a translatable way to achieve many of the metabolic benefits of a PR diet.

PMID:
27346343
PMCID:
PMC4947548
DOI:
10.1016/j.celrep.2016.05.092
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center