Format

Send to

Choose Destination
Chemosphere. 2016 Sep;159:433-441. doi: 10.1016/j.chemosphere.2016.06.037. Epub 2016 Jun 20.

Assessment of multiple hormone activities of a UV-filter (octocrylene) in zebrafish (Danio rerio).

Author information

1
International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China.
2
International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Engineering Technology Research Center for Wastewater Treatment and Reuse, Shaanxi Province, China; Key Lab of Environmental Engineering, Shaanxi Province, Xi'an University of Architecture and Technology, No. 13, Yanta Road, Xi'an 710055, China. Electronic address: xcwang@xauat.edu.cn.
3
Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.

Abstract

In this study, zebrafish (Danio rerio) were exposed to a UV-filter-octocrylene (OCT) with elevated concentrations for 28 d. The total body accumulation of OCT in zebrafish was found to reach 2321.01 ("L" level), 31,234.80 ("M" level), and 70,593.38 ng g(-1) ("H" level) when the average OCT exposure concentration was controlled at 28.61, 505.62, and 1248.70 μg L(-1), respectively. Gross and histological observations as well as RT-qPCR analysis were conducted to determine the effects of OCT accumulation on zebrafish. After exposure, the gonad-somatic index and percentage of vitellogenic oocytes were found to increase significantly in the ovaries of female zebrafish at the H accumulation level. Significant up-regulation of esr1 and cyp19b were observed in the gonads, as well as vtg1 in the livers for both female and male zebrafish. At M and H accumulation levels, apparent down-regulation of ar was observed in the ovaries and testis of the female and male zebrafish, respectively. Although the extent of the effects on zebrafish differed at different accumulation levels, the induction of vtg1 and histological changes in the ovaries are indications of estrogenic activity and the inhibition of esr1 and ar showed antiestrogenic and antiandrogenic activity, respectively. Thus, as OCT could easily accumulate in aquatic life such as zebrafish, one of its most of concern hazards would be the disturbance of the histological development and its multiple hormonal activities.

KEYWORDS:

Hormone activity; Octocrylene (OCT); UV filters; Zebrafish

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center