Format

Send to

Choose Destination
Anesthesiology. 2016 Sep;125(3):535-46. doi: 10.1097/ALN.0000000000001213.

α2-Adrenergic Receptor and Isoflurane Modulation of Presynaptic Ca2+ Influx and Exocytosis in Hippocampal Neurons.

Author information

1
From the Departments of Anesthesiology (M.H., Z.-Y.Z., H.C.H.) and Pharmacology (H.C.H.), Weill Cornell Medical College, New York, New York, USA; and 3Department of Anesthesiology, Kurume University School of Medicine, Kurume, Fukuoka, Japan (M.H.).

Abstract

BACKGROUND:

Evidence indicates that the anesthetic-sparing effects of α2-adrenergic receptor (AR) agonists involve α2A-AR heteroreceptors on nonadrenergic neurons. Since volatile anesthetics inhibit neurotransmitter release by reducing synaptic vesicle (SV) exocytosis, the authors hypothesized that α2-AR agonists inhibit nonadrenergic SV exocytosis and thereby potentiate presynaptic inhibition of exocytosis by isoflurane.

METHODS:

Quantitative imaging of fluorescent biosensors of action potential-evoked SV exocytosis (synaptophysin-pHluorin) and Ca influx (GCaMP6) were used to characterize presynaptic actions of the clinically used α2-AR agonists dexmedetomidine and clonidine, and their interaction with isoflurane, in cultured rat hippocampal neurons.

RESULTS:

Dexmedetomidine (0.1 μM, n = 10) or clonidine (0.5 μM, n = 8) inhibited action potential-evoked exocytosis (54 ± 5% and 59 ± 8% of control, respectively; P < 0.001). Effects on exocytosis were blocked by the subtype-nonselective α2-AR antagonist atipamezole or the α2A-AR-selective antagonist BRL 44408 but not by the α2C-AR-selective antagonist JP 1302. Dexmedetomidine inhibited exocytosis and presynaptic Ca influx without affecting Ca coupling to exocytosis, consistent with an effect upstream of Ca-exocytosis coupling. Exocytosis coupled to both N-type and P/Q-type Ca channels was inhibited by dexmedetomidine or clonidine. Dexmedetomidine potentiated inhibition of exocytosis by 0.7 mM isoflurane (to 42 ± 5%, compared to 63 ± 8% for isoflurane alone; P < 0.05).

CONCLUSIONS:

Hippocampal SV exocytosis is inhibited by α2A-AR activation in proportion to reduced Ca entry. These effects are additive with those of isoflurane, consistent with a role for α2A-AR presynaptic heteroreceptor inhibition of nonadrenergic synaptic transmission in the anesthetic-sparing effects of α2A-AR agonists.

PMID:
27337223
PMCID:
PMC4988866
DOI:
10.1097/ALN.0000000000001213
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center