Environmental assessment of drainage water impacts on water quality and eutrophication level of Lake Idku, Egypt

Environ Pollut. 2016 Sep:216:437-449. doi: 10.1016/j.envpol.2016.05.064. Epub 2016 Jun 17.

Abstract

Lake Idku, northern Egypt, receives large quantities of drainage water from four main discharging drains. Ecological and biological status of Lake Idku has been monitored during (autumn 2012 to summer 2013) to examine the lake water quality and eutrophication level in response to the quality as well as the source of the discharging water. Discrete water samples were collected from the lake body and the drains. Chemical analyses revealed an excessive nutrient load goes into the lake. A range of 1.4-10.6 mg nitrites/L was determined for drain waters, however a sudden increase was observed in lake and drain water samples of up to 84 and 74.5 mg/L, respectively. Reactive silicate ranged between 2.9 and 4.8 mg/L; while inorganic phosphate fluctuated between 0.2 and 0.43 mg/L. Transparency varied from 45 cm to 134 cm with better light conditions at drain sites. Biological results indicated a hyper-eutrophic status for the lake with a range of chlorophyll-a varied from a minimum of 39.9 μg/L (at Idku Drains) and a maximum of 104.2 μg/L (at El-Khairy drain). Phytoplankton community structure revealed higher abundance at lake sites compared with the drains. Maximum phytoplankton density was detected during summer with the dominance of Bacilariophyceae (e.g. Cyclotella meneghiniana, Cyclotella comate, Melosira varians) followed by Chlorophycean taxon (e.g. Scenedesmus dimorphus, S. bijuga and Crucigenia tetrapedia). Five indices were applied to evaluate the water quality of the lake. Diversity Index (DI) indicated slight to light pollution along all sites; while Sapropic Index (SI) indicated slight pollution with acceptable oxygen conditions and an availability of sensitive species. Palmer Index (PI) gave a strong evidence of high organic pollution at some sites in the lake, while Generic Diatom Index (GDI) revealed that levels of pollution varied from average to strong. Trophic Index (TI), suggest that there are an obvious signs of eutrophication in the lake.

Keywords: Diversity; Drainage water; Phytoplankton; Pollution; Water quality index.

MeSH terms

  • Diatoms
  • Egypt
  • Eutrophication*
  • Lakes
  • Phytoplankton
  • Seasons
  • Wastewater*
  • Water Quality*

Substances

  • Waste Water