Send to

Choose Destination
J Biotechnol. 2016 Aug 10;231:212-223. doi: 10.1016/j.jbiotec.2016.06.013. Epub 2016 Jun 14.

Comparative transcriptome analysis of the biocontrol strain Bacillus amyloliquefaciens FZB42 as response to biofilm formation analyzed by RNA sequencing.

Author information

Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany.
Genome Research of Industrial Microorganisms, Center for Biotechnology, Bielefeld University, Bielefeld, Germany. Electronic address:


The strain Bacillus amyloliquefaciens FZB42 is a plant growth promoting rhizobacterium (PGPR) and biocontrol agent known to keep infections of lettuce (Lactuca sativa) by the phytopathogen Rhizoctonia solani down. Several mechanisms, including the production of secondary metabolites possessing antimicrobial properties and induction of the host plant's systemic resistance (ISR), were proposed to explain the biocontrol effect of the strain. B. amyloliquefaciens FZB42 is able to form plaques (biofilm-like structures) on plant roots and this feature was discussed to be associated with its biocontrol properties. For this reason, formation of B. amyloliquefaciens biofilms was studied at the transcriptional level using high-throughput sequencing of whole transcriptome cDNA libraries from cells grown under biofilm-forming conditions vs. planktonic growth. Comparison of the transcriptional profiles of B. amyloliquefaciens FZB42 under these growth conditions revealed a common set of highly transcribed genes mostly associated with basic cellular functions. The lci gene, encoding an antimicrobial peptide (AMP), was among the most highly transcribed genes of cells under both growth conditions suggesting that AMP production may contribute to biocontrol. In contrast, gene clusters coding for synthesis of secondary metabolites with antimicrobial properties were only moderately transcribed and not induced in biofilm-forming cells. Differential gene expression revealed that 331 genes were significantly up-regulated and 230 genes were down-regulated in the transcriptome of B. amyloliquefaciens FZB42 under biofilm-forming conditions in comparison to planktonic cells. Among the most highly up-regulated genes, the yvqHI operon, coding for products involved in nisin (class I bacteriocin) resistance, was identified. In addition, an operon whose products play a role in fructosamine metabolism was enhanced in its transcription. Moreover, genes involved in the production of the extracellular biofilm matrix including exopolysaccharide genes (eps) and the yqxM-tasA-sipW operon encoding amyloid fiber synthesis were up-regulated in the B. amyloliquefaciens FZB42 biofilm. On the other hand, highly down-regulated genes in biofilms are associated with synthesis, assembly and regulation of the flagellar apparatus, the degradation of aromatic compounds and the export of copper. The obtained transcriptional profile for B. amyloliquefaciens biofilm cells uncovered genes involved in its development and enabled the assessment that synthesis of secondary metabolites among other factors may contribute to the biocontrol properties of the strain.


B. amyloliquefaciens FZB42; Biofilm; Differential gene expression; Plant growth promotion; Secondary metabolites; Transcriptome

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center