Hyaluronic acid-stimulating activity in sera from the bovine fetus and from breast cancer patients

Cancer Res. 1989 Jul 1;49(13):3499-505.

Abstract

The sine qua non of malignancy is the ability of tumor cells to migrate and invade surrounding tissue. There are many substances that have been described that enhance cell motility and hyaluronic acid is prominent among these. Hyaluronic acid is a high molecular weight alternating disaccharide polymer found in abundance in extracellular matrices whenever rapid cell proliferation or tissue regeneration and repair occur. It creates a permissive environment for cell motility during embryogenesis, and high levels of hyaluronic acid also correlate with increased tumor cell invasion and aggressiveness. Little is known about the regulation of hyaluronic acid production, either in normal tissue or in malignancy. In this study, we characterize a hyaluronic acid-stimulating activity in fetal calf serum and describe a similar activity in the sera of breast cancer patients. The stimulating activity was measured by placing aliquots of test substance on fibrosarcoma cells. These indicator cells, which synthesize copious quantities of hyaluronic acid, respond to stimulation in a time- and dose-dependent fashion. The fetal calf serum hyaluronic acid-stimulating activity is maximum early in gestation and then falls rapidly to essentially no activity at term. This activity was partially purified from 120-day fetal calf serum by concanavalin A-Sepharose affinity and ion exchange chromatography and is accounted for by a glycoprotein with a molecular weight of 150,000 on gel filtration under native conditions. The sera of breast cancer patients with measurable burden of disease also contained hyaluronic acid-stimulating activity, which was not present in normal serum donors or in breast cancer patients without evidence of disease. The production of this stimulating activity may contribute to the development of the malignant phenotype by inducing hyaluronic acid-rich microenvironments that are permissive to tumor cell invasion and metastases.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Breast Neoplasms / blood*
  • Cattle
  • Cells, Cultured
  • Fetal Blood / physiology*
  • Humans
  • Hyaluronic Acid / biosynthesis*
  • In Vitro Techniques
  • Neoplasm Metastasis
  • Rats
  • Sarcoma, Experimental / metabolism

Substances

  • Hyaluronic Acid