C6 Coefficients and Dipole Polarizabilities for All Atoms and Many Ions in Rows 1-6 of the Periodic Table

J Chem Theory Comput. 2016 Aug 9;12(8):3603-13. doi: 10.1021/acs.jctc.6b00361. Epub 2016 Jul 7.

Abstract

Using time-dependent density functional theory (TDDFT) with exchange kernels, we calculate and test imaginary frequency-dependent dipole polarizabilities for all atoms and many ions in rows 1-6 of the periodic table. These are then integrated over frequency to produce C6 coefficients. Results are presented under different models: straight TDDFT calculations using two different kernels; "benchmark" TDDFT calculations corrected by more accurate quantum chemical and experimental data; and "benchmark" TDDFT with frozen orbital anions. Parametrizations are presented for 411+ atoms and ions, allowing results to be easily used by other researchers. A curious relationship, C6,XY ∝ [αX(0)αY(0)](0.73), is found between C6 coefficients and static polarizabilities α(0). The relationship C6,XY = 2C6,XC6,Y/[(αX/αY)C6,Y + (αY/αX)C6,X] is tested and found to work well (<5% errors) in ∼80% of the cases, but can break down badly (>30% errors) in a small fraction of cases.