Format

Send to

Choose Destination
Trends Neurosci. 2016 Aug;39(8):567-579. doi: 10.1016/j.tins.2016.05.003. Epub 2016 Jun 6.

Multisensory Processes: A Balancing Act across the Lifespan.

Author information

1
The Laboratory for Investigative Neurophysiology (The LINE), Department of Clinical Neurosciences and Department of Radiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland; Electroencephalography Brain Mapping Core, Centre for Biomedical Imaging (CIBM), Lausanne, Switzerland; Department of Ophthalmology, University of Lausanne, Jules Gonin Eye Hospital, Lausanne, Switzerland; Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA. Electronic address: micah.murray@chuv.ch.
2
Department of Communication Sciences and Disorders, Northeastern University, Boston, MA, USA.
3
Department of Medical Neurobiology, Institute for Medical Research Israel-Canada (IMRIC), Hadassah Medical School, Hebrew University of Jerusalem, Jerusalem, Israel; Interdisciplinary and Cognitive Science Program, The Edmond & Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem, Jerusalem, Israel.
4
Department of Hearing and Speech Sciences, Vanderbilt University Medical Center, Nashville, TN, USA; Department of Psychology, Vanderbilt University, Nashville, TN, USA; Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA; Department of Psychiatry, Vanderbilt University, Nashville, TN, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA. Electronic address: mark.wallace@vanderbilt.edu.

Abstract

Multisensory processes are fundamental in scaffolding perception, cognition, learning, and behavior. How and when stimuli from different sensory modalities are integrated rather than treated as separate entities is poorly understood. We review how the relative reliance on stimulus characteristics versus learned associations dynamically shapes multisensory processes. We illustrate the dynamism in multisensory function across two timescales: one long term that operates across the lifespan and one short term that operates during the learning of new multisensory relations. In addition, we highlight the importance of task contingencies. We conclude that these highly dynamic multisensory processes, based on the relative weighting of stimulus characteristics and learned associations, provide both stability and flexibility to brain functions over a wide range of temporal scales.

KEYWORDS:

aging.; cross-modal; development; learning; multisensory; plasticity

PMID:
27282408
PMCID:
PMC4967384
DOI:
10.1016/j.tins.2016.05.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center