Format

Send to

Choose Destination
PLoS One. 2016 Jun 9;11(6):e0157172. doi: 10.1371/journal.pone.0157172. eCollection 2016.

Regulation of the Axillary Osmidrosis-Associated ABCC11 Protein Stability by N-Linked Glycosylation: Effect of Glucose Condition.

Author information

1
Department of Pharmacy, The University of Tokyo Hospital, Tokyo, Japan.
2
RIKEN Center for Life Science Technology, Yokohama, Japan.

Abstract

ATP-binding cassette C11 (ABCC11) is a plasma membrane protein involved in the transport of a variety of lipophilic anions. ABCC11 wild-type is responsible for the high-secretion phenotypes in human apocrine glands, such as that of wet-type ear wax, and the risk of axillary osmidrosis. We have previously reported that mature ABCC11 is a glycoprotein containing two N-linked glycans at Asn838 and Asn844. However, little is known about the role of N-linked glycosylation in the regulation of ABCC11 protein. In the current study, we investigated the effects of N-linked glycosylation on the protein level and localization of ABCC11 using polarized Madin-Darby canine kidney II cells. When the N-linked glycosylation in ABCC11-expressing cells was chemically inhibited by tunicamycin treatment, the maturation of ABCC11 was suppressed and its protein level was significantly decreased. Immunoblotting analyses demonstrated that the protein level of the N-linked glycosylation-deficient mutant (N838Q and N844Q: Q838/844) was about half of the ABCC11 wild-type level. Further biochemical studies with the Q838/844 mutant showed that this glycosylation-deficient ABCC11 was degraded faster than wild-type probably due to the enhancement of the MG132-sensitive protein degradation pathway. Moreover, the incubation of ABCC11 wild-type-expressing cells in a low-glucose condition decreased mature, glycosylated ABCC11, compared with the high-glucose condition. On the other hand, the protein level of the Q838/844 mutant was not affected by glucose condition. These results suggest that N-linked glycosylation is important for the protein stability of ABCC11, and physiological alteration in glucose may affect the ABCC11 protein level and ABCC11-related phenotypes in humans, such as axillary osmidrosis.

PMID:
27281343
PMCID:
PMC4900533
DOI:
10.1371/journal.pone.0157172
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center