Format

Send to

Choose Destination
PeerJ. 2016 Jun 1;4:e2034. doi: 10.7717/peerj.2034. eCollection 2016.

Living to the range limit: consumer isotopic variation increases with environmental stress.

Author information

1
Faculté des Sciences et des Techniques, Université de Nantes , Nantes , France.
2
School of Biological Sciences, Queen's University Belfast , Belfast , United Kingdom.
3
Instituto de Ciencias Naturales Alexander Von Humboldt, Universidad de Antofagasta , Antofagasta , Chile.

Abstract

BACKGROUND:

Theoretically, each species' ecological niche is phylogenetically-determined and expressed spatially as the species' range. However, environmental stress gradients may directly or indirectly decrease individual performance, such that the precise process delimiting a species range may not be revealed simply by studying abundance patterns. In the intertidal habitat the vertical ranges of marine species may be constrained by their abilities to tolerate thermal and desiccation stress, which may act directly or indirectly, the latter by limiting the availability of preferred trophic resources. Therefore, we expected individuals at greater shore heights to show greater variation in diet alongside lower indices of physiological condition.

METHODS:

We sampled the grazing gastropod Echinolittorina peruviana from the desert coastline of northern Chile at three shore heights, across eighteen regionally-representative shores. Stable isotope values (δ13C and δ15N) were extracted from E. peruviana and its putative food resources to estimate Bayesian ellipse area, carbon and nitrogen ranges and diet. Individual physiological condition was tracked by muscle % C and % N.

RESULTS:

There was an increase in isotopic variation at high shore levels, where E. peruviana's preferred resource, tide-deposited particulate organic matter (POM), appeared to decrease in dietary contribution, and was expected to be less abundant. Both muscle % C and % N of individuals decreased with height on the shore.

DISCUSSION:

Individuals at higher stress levels appear to be less discriminating in diet, likely because of abiotic forcing, which decreases both consumer mobility and the availability of a preferred resource. Abiotic stress might be expected to increase trophic variation in other selective dietary generalist species. Where this coincides with a lower physiological condition may be a direct factor in setting their range limit.

KEYWORDS:

Diet; Intertidal; Isotopic niche; Littorinid; Physiological condition; Range limit; Stable isotopes; Stress gradient; Trophic niche width; Trophic variation

Supplemental Content

Full text links

Icon for PeerJ, Inc. Icon for PubMed Central
Loading ...
Support Center