Format

Send to

Choose Destination
Cell Host Microbe. 2016 Jun 8;19(6):865-73. doi: 10.1016/j.chom.2016.05.003. Epub 2016 May 26.

Immunological Consequences of Intestinal Fungal Dysbiosis.

Author information

1
F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
2
Genomics Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
3
Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA.
4
Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA.
5
F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; Department of Pathology and Laboratory Medicine, University of California at Los Angeles, Los Angeles, CA 90095, USA. Electronic address: david.underhill@csmc.edu.
6
F. Widjaja Foundation Inflammatory Bowel and Immunobiology Research Institute, and the Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA. Electronic address: ili2001@med.cornell.edu.

Abstract

Compared to bacteria, the role of fungi within the intestinal microbiota is poorly understood. In this study we investigated whether the presence of a "healthy" fungal community in the gut is important for modulating immune function. Prolonged oral treatment of mice with antifungal drugs resulted in increased disease severity in acute and chronic models of colitis, and also exacerbated the development of allergic airway disease. Microbiota profiling revealed restructuring of fungal and bacterial communities. Specifically, representation of Candida spp. was reduced, while Aspergillus, Wallemia, and Epicoccum spp. were increased. Oral supplementation with a mixture of three fungi found to expand during antifungal treatment (Aspergillus amstelodami, Epicoccum nigrum, and Wallemia sebi) was sufficient to recapitulate the exacerbating effects of antifungal drugs on allergic airway disease. Taken together, these results indicate that disruption of commensal fungal populations can influence local and peripheral immune responses and enhance relevant disease states.

Comment in

PMID:
27237365
PMCID:
PMC4900921
DOI:
10.1016/j.chom.2016.05.003
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center