Format

Send to

Choose Destination
Cortex. 2016 Aug;81:176-91. doi: 10.1016/j.cortex.2016.04.017. Epub 2016 May 2.

Social representations and contextual adjustments as two distinct components of the Theory of Mind brain network: Evidence from the REMICS task.

Author information

1
École de Psychologie, Université Laval, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Canada.
2
École de Psychologie, Université Laval, Canada; Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Canada; Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Canada.
3
Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Canada.
4
Centre de Recherche de l'Institut Universitaire en Santé Mentale de Québec, Canada; Département de Psychiatrie et Neurosciences, Faculté de Médecine, Université Laval, Canada. Electronic address: amelie.achim@fmed.ulaval.ca.

Abstract

Theory of mind (ToM) refers to the ability to infer the mental states of others. Behavioral measures of ToM usually present information about both a character and the context in which this character is placed, and these different pieces of information can be used to infer the character's mental states. A set of brain regions designated as the ToM brain network is recognized to support (ToM) inferences. Different brain regions within that network could however support different ToM processes. This functional magnetic resonance imaging (fMRI) study aimed to distinguish the brain regions supporting two aspects inherent to many ToM tasks, i.e., the ability to infer or represent mental states and the ability to use the context to adjust these inferences. Nineteen healthy subjects were scanned during the REMICS task, a novel task designed to orthogonally manipulate mental state inferences (as opposed to physical inferences) and contextual adjustments of inferences (as opposed to inferences that do not require contextual adjustments). We observed that mental state inferences and contextual adjustments, which are important aspects of most behavioral ToM tasks, rely on distinct brain regions or subregions within the classical brain network activated in previous ToM research. Notably, an interesting dissociation emerged within the medial prefrontal cortex (mPFC) and temporo-parietal junctions (TPJ) such that the inferior part of these brain regions responded to mental state inferences while the superior part of these brain regions responded to the requirement for contextual adjustments. This study provides evidence that the overall set of brain regions activated during ToM tasks supports different processes, and highlights that cognitive processes related to contextual adjustments have an important role in ToM and should be further studied.

KEYWORDS:

Context; Integration; Intentions; Mentalizing; Social cognition; Theory of Mind; fMRI

PMID:
27236373
DOI:
10.1016/j.cortex.2016.04.017
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center