Format

Send to

Choose Destination
Eur J Endocrinol. 2016 Jul;175(1):R11-25. doi: 10.1530/EJE-15-1217.

MECHANISMS IN ENDOCRINOLOGY: Brown adipose tissue in humans: regulation and metabolic significance.

Author information

1
Department of Endocrinology and DiabetesPrincess Alexandra Hospital, Brisbane, Queensland, AustraliaSchool of MedicineUniversity of Queensland, Brisbane, Queensland 4102, Australia Department of Endocrinology and DiabetesPrincess Alexandra Hospital, Brisbane, Queensland, AustraliaSchool of MedicineUniversity of Queensland, Brisbane, Queensland 4102, Australia.
2
Department of Endocrinology and DiabetesPrincess Alexandra Hospital, Brisbane, Queensland, AustraliaSchool of MedicineUniversity of Queensland, Brisbane, Queensland 4102, Australia Department of Endocrinology and DiabetesPrincess Alexandra Hospital, Brisbane, Queensland, AustraliaSchool of MedicineUniversity of Queensland, Brisbane, Queensland 4102, Australia k.ho@uq.edu.au.

Abstract

The recent discovery that functional brown adipose tissue (BAT) persists in adult humans has enkindled a renaissance in metabolic research, with a view of harnessing its thermogenic capacity to combat obesity. This review focuses on the advances in the regulation and the metabolic significance of BAT in humans. BAT activity in humans is stimulated by cold exposure and by several factors such as diet and metabolic hormones. BAT function is regulated at two levels: an acute process involving the stimulation of the intrinsic thermogenic activity of brown adipocytes and a chronic process of growth involving the proliferation of pre-existing brown adipocytes or differentiation to brown adipocytes of adipocytes from specific white adipose tissue depots. BAT activity is reduced in the obese, and its stimulation by cold exposure increases insulin sensitivity and reduces body fat. These observations provide strong evidence that BAT plays a significant role in energy balance in humans and has the potential to be harnessed as a therapeutic target for the management of obesity.

PMID:
27220620
DOI:
10.1530/EJE-15-1217
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Sheridan PubFactory
Loading ...
Support Center