Send to

Choose Destination
Brain Res Dev Brain Res. 1989 Apr 1;46(2):243-52.

Alterations in the microenvironment during spreading depression associated with epileptiform activity in the immature neocortex.

Author information

Department of Neurology, Baylor College of Medicine, Houston, TX 77030.


Local changes in extracellular ion concentrations were measured with ion-sensitive microelectrodes in slices of mature (greater than 40 days of age) or immature (16-30 days of age) rat neocortex maintained in vitro. Repetitive stimulation resulted in increases in extracellular potassium ([K+]o) to levels of 8.85 +/- 2.1 mM in slices from adult animals and 12.77 +/- 1.8 mM in slices from immature animals. During exposure to picrotoxin, maximum levels were 11.3 +/- 2.6 and 14.8 +/- 2.5 mM in the mature and immature groups, respectively. Picrotoxin (50 microM) induced spontaneous bursts of repetitive spiking, followed by a slow, negative field potential, associated with spreading depression (SD), in slices from immature animals. [K+]o levels increased to 10.2 +/- 3.9 mM during repetitive spike discharges and reached 30.3 +/- 18.5 mM during SDs. Variations in the size of the extracellular space (ES) were examined during SD. The ES was found to reversibly decrease by 39 +/- 4.5%. Clusters of repetitive spikes were associated with 0.1-0.2 mM decreases in [Ca2+]o, whereas 1.12 +/- 0.06 mM decreases were observed during SDs. Decreases in [Na+]o and [Cl-]o of 56 +/- 10 mM and 41 +/- 9 mM, respectively, were observed during SDs suggesting that a net transmembrane movement of water occurred during SDs. These results indicate that changes in [K+]o associated with epileptiform activity in the immature nervous system are quantitatively different from those observed in the mature brain. These large increases in [K+]o may contribute to the prolonged nature of epileptiform discharges in the developing nervous system.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center