Format

Send to

Choose Destination
See comment in PubMed Commons below
J Nucl Med. 2016 Sep;57(9):1448-53. doi: 10.2967/jnumed.115.171454. Epub 2016 May 19.

Preclinical Evaluation of 18F-PF-05270430, a Novel PET Radioligand for the Phosphodiesterase 2A Enzyme.

Author information

  • 1Pfizer Worldwide Research and Development, Groton, Connecticut; and.
  • 2PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut.
  • 3PET Center, Department of Radiology and Biomedical Imaging, Yale University, New Haven, Connecticut henry.huang@yale.edu.

Abstract

The enzyme phosphodiesterase 2A (PF-05270430) is a potential target for development of novel therapeutic agents for the treatment of cognitive impairments. The goal of the present study was to evaluate the PDE2A ligand (18)F-PF-05270430, 4-(3-fluoroazetidin-1-yl)-7-methyl-5-(1-methyl-5-(4-(trifluoromethyl)phenyl)-1H-pyrazol-4-yl)imidazo[1,5-f][1,2,4]triazine, in nonhuman primates.

METHODS:

(18)F-PF-05270430 was radiolabeled by 2 methods via nucleophilic substitution of its tosylate precursor. Tissue metabolite analysis in rodents and PET imaging in nonhuman primates under baseline and blocking conditions were performed to determine the pharmacokinetic and binding characteristics of the new radioligand. Various kinetic modeling approaches were assessed to select the optimal method for analysis of imaging data.

RESULTS:

(18)F-PF-05270430 was synthesized in greater than 98% radiochemical purity and high specific activity. In the nonhuman primate brain, uptake of (18)F-PF-05270430 was fast, with peak concentration (SUVs of 1.5-1.8 in rhesus monkeys) achieved within 7 min after injection. The rank order of uptake was striatum > neocortical regions > cerebellum. Regional time-activity curves were well fitted by the 2-tissue-compartment model and the multilinear analysis-1 (MA1) method to arrive at reliable estimates of regional distribution volume (VT) and binding potential (BPND) with 120 min of scan data. Regional VT values (MA1) ranged from 1.28 mL/cm(3) in the cerebellum to 3.71 mL/cm(3) in the putamen, with a BPND of 0.25 in the temporal cortex and 1.92 in the putamen. Regional BPND values estimated by the simplified reference tissue model (SRTM) were similar to those from MA1. Test-retest variability in high-binding regions (striatum) was 4% ± 6% for MA1 VT, 13% ± 6% for MA1 BPND, and 13% ± 7% SRTM BPND, respectively. Pretreatment of animals with the PDE2A inhibitor PF-05180999 resulted in a dose-dependent reduction of (18)F-PF-05270430 specific binding, with a half maximal effective concentration of 69.4 ng/mL in plasma PF-05180999 concentration.

CONCLUSION:

(18)F-PF-05270430 displayed fast and reversible kinetics in nonhuman primates, as well as specific binding blockable by a PDE2A inhibitor. This is the first PET tracer with desirable imaging properties and demonstrated ability to image and quantify PDE2A in vivo.

KEYWORDS:

non-human primates; phosphodiesterase 2A; positron emission tomography; radioligand

PMID:
27199356
DOI:
10.2967/jnumed.115.171454
[PubMed - in process]
PubMed Commons home

PubMed Commons

0 comments
How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center