Format

Send to

Choose Destination
Cancer Res. 2016 Jul 1;76(13):3954-64. doi: 10.1158/0008-5472.CAN-15-3131. Epub 2016 Apr 28.

Antibody-Targeted Chemotherapy for the Treatment of Melanoma.

Author information

1
Division of Hematology, Mayo Clinic, Rochester, Minnesota.
2
Department of Oncology, Mayo Clinic, Rochester, Minnesota.
3
Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota.
4
Division of Hematology, Mayo Clinic, Rochester, Minnesota. Division of Oncology, Mayo Clinic, Rochester, Minnesota. Markovic.svetomir@mayo.edu.

Abstract

Antibody-directed chemotherapy (ADC) offers an advantage over conventional chemotherapy because it provides antibody-directed targeting, with resultant improvement in therapeutic efficacy and reduced toxicity. Despite extensive research, with notable exceptions, broad clinical application of ADC remains elusive; major hurdles include the instability of antibody-chemotherapy linkers and reduced tumor toxicity of the chemotherapy when bound to the antibody. To address these challenges, we have developed a platform technology that utilizes the nab-paclitaxel formulation of paclitaxel, Abraxane, in which hydrophobic paclitaxel is suspended in 130-nm albumin nanoparticles and thus made water-soluble. We have developed a method to noncovalently coat the Abraxane nanoparticle with recombinant mAbs (anti-VEGF, bevacizumab) and guide Abraxane delivery into tumors in a preclinical model of human A375 melanoma. Here, we define the binding characteristics of bevacizumab and Abraxane, demonstrate that the chemotherapy agent retains its cytotoxic effect, while the antibody maintains the ability to bind its ligand when the two are present in a single nanoparticle (AB160), and show that the nanoparticle yields improved antitumor efficacy in a preclinical human melanoma xenograft model. Further data suggest that numerous therapeutic monoclonal IgG1 antibodies may be utilized in this platform, which has implications for many solid and hematologic malignancies. Cancer Res; 76(13); 3954-64.

PMID:
27197186
DOI:
10.1158/0008-5472.CAN-15-3131
[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Icon for HighWire
Loading ...
Support Center