Format

Send to

Choose Destination
J Natl Cancer Inst. 2016 May 18;108(10). doi: 10.1093/jnci/djw103. Print 2016 Oct.

Endogenous Estrogens, Estrogen Metabolites, and Breast Cancer Risk in Postmenopausal Chinese Women.

Author information

1
Affiliations of authors: Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD (SCM, CEM, KY, MHG, BTJ, NR, RNH, RGZ); Division of Epidemiology, Department of Medicine, Vanderbilt-Ingram Cancer Center, Vanderbilt University School of Medicine, Nashville, TN (XOS, QC, GY, WZ); Frederick National Laboratory for Cancer Research, Cancer Research Technology Program, Leidos Biomedical Research, Inc., Frederick, MD (XX); Department of Epidemiology, Shanghai Cancer Institute, Shanghai, China (HL, YTG); Department of Epidemiology, Division of OVP, Cancer Prevention and Population Sciences, University of Texas MD Anderson Cancer Center, Houston, TX (WHC); Information Management Services, Inc., Rockville, MD (DR, JBM).

Abstract

BACKGROUND:

The role of estrogen metabolism in determining breast cancer risk and differences in breast cancer rates between high-incidence and low-incidence nations is poorly understood.

METHODS:

We measured urinary concentrations of estradiol and estrone (parent estrogens) and 13 estrogen metabolites formed by irreversible hydroxylation at the C-2, C-4, or C-16 positions of the steroid ring in a nested case-control study of 399 postmenopausal invasive breast cancer case participants and 399 matched control participants from the population-based Shanghai Women's Health Study cohort. Odds ratios (ORs) and 95% confidence intervals (CIs) of breast cancer by quartiles of metabolic pathway groups, pathway ratios, and individual estrogens/estrogen metabolites were estimated by multivariable conditional logistic regression. Urinary estrogen/estrogen metabolite measures were compared with those of postmenopausal non-hormone-using Asian Americans, a population with three-fold higher breast cancer incidence rates. All statistical tests were two-sided.

RESULTS:

Urinary concentrations of parent estrogens were strongly associated with breast cancer risk (ORQ4vsQ1 = 1.94, 95% CI = 1.21 to 3.12, Ptrend = .01). Of the pathway ratios, the 2-pathway:total estrogens/estrogen metabolites and 2-pathway:parent estrogens were inversely associated with risk (ORQ4vsQ1 = 0.57, 95% CI = 0.35 to 0.91, Ptrend = .03, and ORQ4vsQ1 = 0.61, 95% CI = 0.37 to 0.99, Ptrend = .04, respectively). After adjusting for parent estrogens, these associations remained clearly inverse but lost statistical significance (ORQ4vsQ1 = 0.65, 95% CI = 0.39 to 1.06, Ptrend = .12 and ORQ4vsQ1 = 0.76, 95% CI = 0.44 to 1.32, Ptrend = .28). The urinary concentration of all estrogens/estrogen metabolites combined in Asian American women was triple that in Shanghai women.

CONCLUSIONS:

Lower urinary parent estrogen concentrations and more extensive 2-hydroxylation were each associated with reduced postmenopausal breast cancer risk in a low-risk nation. Markedly higher total estrogen/estrogen metabolite concentrations in postmenopausal United States women (Asian Americans) than in Shanghai women may partly explain higher breast cancer rates in the United States.

PMID:
27193440
PMCID:
PMC5858156
DOI:
10.1093/jnci/djw103
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Silverchair Information Systems Icon for PubMed Central
Loading ...
Support Center