Send to

Choose Destination
Endocrinology. 2016 Jul;157(7):2735-49. doi: 10.1210/en.2016-1209. Epub 2016 May 16.

Pharmacological and Genetic Manipulation of p53 in Brown Fat at Adult But Not Embryonic Stages Regulates Thermogenesis and Body Weight in Male Mice.

Author information

Department of Physiology (O.A.-M., B.P., M.J.G.-R., M.G.-L., E.D.R., M.Q., A.S., C.V.A., M.L., C.D., R.N.), Center for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela 15782, Spain; Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (O.A.-M., B.P., M.J.G.-R., M.Q., M.L., C.D., R.N.), Santiago de Compostela 15706, Spain; Department of Adipocyte Development and Nutrition (D.K., M.K., T.J.S.), German Institute of Human Nutrition Potsdam-Rehbrücke, 14558 Nuthetal, Germany; and German Center for Diabetes Research (T.J.S.), München-Neuherberg 85764, Germany.


p53 is a well-known tumor suppressor that plays multiple biological roles, including the capacity to modulate metabolism at different levels. However, its metabolic role in brown adipose tissue (BAT) remains largely unknown. Herein we sought to investigate the physiological role of endogenous p53 in BAT and its implication on BAT thermogenic activity and energy balance. To this end, we generated and characterized global p53-null mice and mice lacking p53 specifically in BAT. Additionally we performed gain-and-loss-of-function experiments in the BAT of adult mice using virogenetic and pharmacological approaches. BAT was collected and analyzed by immunohistochemistry, thermography, real-time PCR, and Western blot. p53-deficient mice were resistant to diet-induced obesity due to increased energy expenditure and BAT activity. However, the deletion of p53 in BAT using a Myf5-Cre driven p53 knockout did not show any changes in body weight or the expression of thermogenic markers. The acute inhibition of p53 in the BAT of adult mice slightly increased body weight and inhibited BAT thermogenesis, whereas its overexpression in the BAT of diet-induced obese mice reduced body weight and increased thermogenesis. On the other hand, pharmacological activation of p53 improves body weight gain due to increased BAT thermogenesis by sympathetic nervous system in obese adult wild-type mice but not in p53(-/-) animals. These results reveal that p53 regulates BAT metabolism by coordinating body weight and thermogenesis, but these metabolic actions are tissue specific and also dependent on the developmental stage.

[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center