Format

Send to

Choose Destination
Neuroimage. 2016 Aug 1;136:139-48. doi: 10.1016/j.neuroimage.2016.05.017. Epub 2016 May 10.

Frontal preparatory neural oscillations associated with cognitive control: A developmental study comparing young adults and adolescents.

Author information

1
Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States. Electronic address: kai.hwang@berkeley.edu.
2
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States; Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States.
3
Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States; Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, United States.
4
Department of Neuroscience, Brown University, Providence, RI, United States.
5
Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States; Center for the Neural Basis of Cognition, Carnegie Mellon University and University of Pittsburgh, Pittsburgh, PA, United States.

Abstract

Functional magnetic resonance imaging (fMRI) studies suggest that age-related changes in the frontal cortex may underlie developmental improvements in cognitive control. In the present study we used magnetoencephalography (MEG) to identify frontal oscillatory neurodynamics that support age-related improvements in cognitive control during adolescence. We characterized the differences in neural oscillations in adolescents and adults during the preparation to suppress a prepotent saccade (antisaccade trials-AS) compared to preparing to generate a more automatic saccade (prosaccade trials-PS). We found that for adults, AS were associated with increased beta-band (16-38Hz) power in the dorsal lateral prefrontal cortex (DLPFC), enhanced alpha- to low beta-band (10-18Hz) power in the frontal eye field (FEF) that predicted performance, and increased cross-frequency alpha-beta (10-26Hz) amplitude coupling between the DLPFC and the FEF. Developmental comparisons between adults and adolescents revealed similar engagement of DLPFC beta-band power but weaker FEF alpha-band power, and lower cross-frequency coupling between the DLPFC and the FEF in adolescents. These results suggest that lateral prefrontal neural activity associated with cognitive control is adult-like by adolescence; the development of cognitive control from adolescence to adulthood is instead associated with increases in frontal connectivity and strengthening of inhibition signaling for suppressing task-incompatible processes.

KEYWORDS:

Adolescence; Antisaccade; Frontal cortex; Inhibitory control; Neural oscillations

PMID:
27173759
PMCID:
PMC4914451
DOI:
10.1016/j.neuroimage.2016.05.017
[Indexed for MEDLINE]
Free PMC Article

Supplemental Content

Full text links

Icon for Elsevier Science Icon for PubMed Central
Loading ...
Support Center