Send to

Choose Destination
See comment in PubMed Commons below
Cell Death Dis. 2016 May 12;7:e2222. doi: 10.1038/cddis.2016.108.

Ischemic postconditioning protects the heart against ischemia-reperfusion injury via neuronal nitric oxide synthase in the sarcoplasmic reticulum and mitochondria.

Author information

Department of Pharmacology, Jiangsu Provincial Key Lab of Cardiovascular Diseases and Molecular Intervention, Nanjing Medical University, Nanjing, China.


As a result of its spatial confinement in cardiomyocytes, neuronal nitric oxide synthase (nNOS) is thought to regulate mitochondrial and sarcoplasmic reticulum (SR) function by maintaining nitroso-redox balance and Ca(2+) cycling. Thus, we hypothesize that ischemic postconditioning (IPostC) protects hearts against ischemic/reperfusion (I/R) injury through an nNOS-mediated pathway. Isolated mouse hearts were subjected to I/R injury in a Langendorff apparatus, H9C2 cells and primary neonatal rat cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) in vitro. IPostC, compared with I/R, decreased infarct size and improved cardiac function, and the selective nNOS inhibitors abolished these effects. IPostC recovered nNOS activity and arginase expression. IPostC also increased AMP kinase (AMPK) phosphorylation and alleviated oxidative stress, and nNOS and AMPK inhibition abolished these effects. IPostC increased nitrotyrosine production in the cytosol but decreased it in mitochondria. Enhanced phospholamban (PLB) phosphorylation, normalized SR function and decreased Ca(2+) overload were observed following the recovery of nNOS activity, and nNOS inhibition abolished these effects. Similar effects of IPostC were demonstrated in cardiomyocytes in vitro. IPostC decreased oxidative stress partially by regulating uncoupled nNOS and the nNOS/AMPK/peroxisome proliferator-activated receptor gamma coactivator 1 alpha/superoxide dismutase axis, and improved SR function through increasing SR Ca(2+) load. These results suggest that IPostC protected hearts against I/R injury via an nNOS-mediated pathway.

PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group Icon for PubMed Central
    Loading ...
    Support Center