Format

Send to

Choose Destination
Cell Mol Life Sci. 2016 Jul;73(14):2809-19. doi: 10.1007/s00018-016-2251-9. Epub 2016 May 12.

Starch-degrading polysaccharide monooxygenases.

Author information

1
NTT Hi-Tech Institute (NHTI), Nguyen Tat Thanh University, 298-300A Nguyen Tat Thanh Street, Ward 13, District 4, Ho Chi Minh City, Vietnam.
2
Department of Chemistry and Department of Molecular & Cell Biology, University of California, Berkeley, Berkeley, CA, 94720-3220, USA. marletta@berkeley.edu.

Abstract

Polysaccharide degradation by hydrolytic enzymes glycoside hydrolases (GHs) is well known. More recently, polysaccharide monooxygenases (PMOs, also known as lytic PMOs or LPMOs) were found to oxidatively degrade various polysaccharides via a copper-dependent hydroxylation. PMOs were previously thought to be either GHs or carbohydrate binding modules (CBMs), and have been re-classified in carbohydrate active enzymes (CAZY) database as auxiliary activity (AA) families. These enzymes include cellulose-active fungal PMOs (AA9, formerly GH61), chitin- and cellulose-active bacterial PMOs (AA10, formerly CBM33), and chitin-active fungal PMOs (AA11). These PMOs significantly boost the activity of GHs under industrially relevant conditions, and thus have great potential in the biomass-based biofuel industry. PMOs that act on starch are the latest PMOs discovered (AA13), which has expanded our perspectives in PMOs studies and starch degradation. Starch-active PMOs have many common structural features and biochemical properties of the PMO superfamily, yet differ from other PMO families in several important aspects. These differences likely correlate, at least in part, to the differences in primary and higher order structures of starch and cellulose, and chitin. In this review we will discuss the discovery, structural features, biochemical and biophysical properties, and possible biological functions of starch-active PMOs, as well as their potential application in the biofuel, food, and other starch-based industries. Important questions regarding various aspects of starch-active PMOs and possible economical driving force for their future studies will also be highlighted.

KEYWORDS:

Auxiliary activity family 13; Biofuels; Copper enzymes; Plant pathogens; Polysaccharide monooxygenases; Starch degradation

PMID:
27170366
DOI:
10.1007/s00018-016-2251-9
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center