Format

Send to

Choose Destination
Sci Total Environ. 2016 Sep 1;563-564:513-29. doi: 10.1016/j.scitotenv.2016.04.010. Epub 2016 May 3.

Bioextraction potential of seaweed in Denmark - An instrument for circular nutrient management.

Author information

1
Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark.
2
Orbicon A/S, Jens Juuls Vej 16, 8260 Viby, Denmark.
3
Department of Bioscience, Faculty of Science and Technology, Aarhus University, Vejlsøvej 25, 8600 Silkeborg, Denmark.
4
Research Group on EcoIndustrial System Analysis, Department of Environmental Science, Faculty of Science and Technology, Aarhus University, Frederiksborgvej 399, 4000 Roskilde, Denmark. Electronic address: mth@envs.au.dk.

Abstract

The aim of the study is to assess the efficacy of seaweed for circular nutrient management to reduce eutrophication levels in the aquatic environment. We performed a comparative Life Cycle Assessment (LCA) of two reference waste management systems treating seaweed as biowaste, i.e. landfill disposal and combustion, and an alternative scenario using the seaweed Saccharina latissima as a resource for biobased fertilizer production. Life Cycle Impact Assessment (LCIA) methods were improved by using a cradle-to-cradle approach, quantifying fate factors for nitrogen and phosphorus loss from fertilized agriculture to the aquatic environment. We also differentiated between nitrogen- and phosphorus-limited marine water to improve the traditional freshwater impact category, making this indicator suitable for decision support in relation to coastal water management schemes. Offshore cultivation of Saccharina latissima with an average productivity of 150Mg/km(2) in Danish waters in 2014 was applied to a cultivation scenario of 208km(2). The bioresource scenario performs better than conventional biowaste management systems, delivering a net reduction in aquatic eutrophication levels of 32.29kgNeq. and 16.58kgPO4(3-)eq. per Mg (dry weight) of seaweed, quantified by the ReCiPe and CML impact assessment methods, respectively. Seaweed cultivation, harvest and reuse of excess nutrients from the aquatic environment is a promising approach for sustainable resource cycling in a future regenerative economy that exploits manmade emissions as a resource for closed loop biobased production while significantly reducing eutrophication levels in 3 out of 7 Danish river basin districts. We obtained at least 10% bioextraction of phosphorus manmade emissions (10%, 89% and >100%) and contributed significantly to local nitrogen reduction goals according to the Water Framework Directive (23%, 78% and >100% of the target).

KEYWORDS:

Circular nutrient management; Ecosystem services; Eutrophication; LCA; Seaweed cultivation

PMID:
27152993
DOI:
10.1016/j.scitotenv.2016.04.010
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center