Send to

Choose Destination
Transl Vis Sci Technol. 2016 May 3;5(3):2. eCollection 2016 May.

Unsupervised Gaussian Mixture-Model With Expectation Maximization for Detecting Glaucomatous Progression in Standard Automated Perimetry Visual Fields.

Author information

Hamilton Glaucoma Center and the Department of Ophthalmology University of California San Diego, La Jolla, CA, USA.
Department of Electrical and Computer Engineering; Department of Biomedical Engineering, University of Memphis, Memphis, TN, USA.
Department of Ophthalmology, New York University, New York, NY, USA.
Department of Ophthalmology, University of Alabama, Birmingham, AL, USA.



To validate Gaussian mixture-model with expectation maximization (GEM) and variational Bayesian independent component analysis mixture-models (VIM) for detecting glaucomatous progression along visual field (VF) defect patterns (GEM-progression of patterns (POP) and VIM-POP). To compare GEM-POP and VIM-POP with other methods.


GEM and VIM models separated cross-sectional abnormal VFs from 859 eyes and normal VFs from 1117 eyes into abnormal and normal clusters. Clusters were decomposed into independent axes. The confidence limit (CL) of stability was established for each axis with a set of 84 stable eyes. Sensitivity for detecting progression was assessed in a sample of 83 eyes with known progressive glaucomatous optic neuropathy (PGON). Eyes were classified as progressed if any defect pattern progressed beyond the CL of stability. Performance of GEM-POP and VIM-POP was compared to point-wise linear regression (PLR), permutation analysis of PLR (PoPLR), and linear regression (LR) of mean deviation (MD), and visual field index (VFI).


Sensitivity and specificity for detecting glaucomatous VFs were 89.9% and 93.8%, respectively, for GEM and 93.0% and 97.0%, respectively, for VIM. Receiver operating characteristic (ROC) curve areas for classifying progressed eyes were 0.82 for VIM-POP, 0.86 for GEM-POP, 0.81 for PoPLR, 0.69 for LR of MD, and 0.76 for LR of VFI.


GEM-POP was significantly more sensitive to PGON than PoPLR and linear regression of MD and VFI in our sample, while providing localized progression information.


Detection of glaucomatous progression can be improved by assessing longitudinal changes in localized patterns of glaucomatous defect identified by unsupervised machine learning.


Gaussian mixture-model; glaucoma; progression detection; standard automated perimetry; unsupervised machine learning; visual field

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center