Format

Send to

Choose Destination
Proc Natl Acad Sci U S A. 2016 May 17;113(20):5526-9. doi: 10.1073/pnas.1604628113. Epub 2016 May 2.

Efficient electrolyzer for CO2 splitting in neutral water using earth-abundant materials.

Author information

1
Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France;
2
Unité Mixte de Recherche Université - CNRS No 7285, Université de Poitiers, 86022 Poitiers Cedex, France.
3
Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université - CNRS No 7591, Université Paris Diderot, Sorbonne Paris Cité, 75205 Paris Cedex 13, France; cyrille@univ-paris-diderot.fr robert@univ-paris-diderot.fr saveant@univ-paris-diderot.fr.

Abstract

Low-cost, efficient CO2-to-CO+O2 electrochemical splitting is a key step for liquid-fuel production for renewable energy storage and use of CO2 as a feedstock for chemicals. Heterogeneous catalysts for cathodic CO2-to-CO associated with an O2-evolving anodic reaction in high-energy-efficiency cells are not yet available. An iron porphyrin immobilized into a conductive Nafion/carbon powder layer is a stable cathode producing CO in pH neutral water with 90% faradaic efficiency. It is coupled with a water oxidation phosphate cobalt oxide anode in a home-made electrolyzer by means of a Nafion membrane. Current densities of approximately 1 mA/cm(2) over 30-h electrolysis are achieved at a 2.5-V cell voltage, splitting CO2 and H2O into CO and O2 with a 50% energy efficiency. Remarkably, CO2 reduction outweighs the concurrent water reduction. The setup does not prevent high-efficiency proton transport through the Nafion membrane separator: The ohmic drop loss is only 0.1 V and the pH remains stable. These results demonstrate the possibility to set up an efficient, low-voltage, electrochemical cell that converts CO2 into CO and O2 by associating a cathodic-supported molecular catalyst based on an abundant transition metal with a cheap, easy-to-prepare anodic catalyst oxidizing water into O2.

KEYWORDS:

CO2-to-CO conversion; carbon dioxide electrolyzer; electrochemistry; molecular catalysis; solar fuels

Supplemental Content

Full text links

Icon for HighWire Icon for PubMed Central
Loading ...
Support Center