Format

Send to

Choose Destination
Brain Res. 2016 Oct 1;1648(Pt B):580-587. doi: 10.1016/j.brainres.2016.04.070. Epub 2016 Apr 29.

ER chaperones in neurodegenerative disease: Folding and beyond.

Author information

1
Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
2
Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. Electronic address: soledad.matus@neurounion.com.
3
Neurounion Biomedical Foundation, Santiago, Chile; Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile; CENPAR, Santiago, Chile; Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. Electronic address: rene.vidal@neurounion.com.

Abstract

Proteins along the secretory pathway are co-translationally translocated into the lumen of the endoplasmic reticulum (ER) as unfolded polypeptide chains. Afterwards, they are usually modified with N-linked glycans, correctly folded and stabilized by disulfide bonds. ER chaperones and folding enzymes control these processes. The accumulation of unfolded proteins in the ER activates a signaling response, termed the unfolded protein response (UPR). The hallmark of this response is the coordinated transcriptional up-regulation of ER chaperones and folding enzymes. In order to discuss the importance of the proper folding of certain substrates we will address the role of ER chaperones in normal physiological conditions and examine different aspects of its contribution in neurodegenerative disease. This article is part of a Special Issue entitled SI:ER stress.

KEYWORDS:

ER chaperones; ER stress; Neurodegenerative disease; Protein aggregation; UPR

PMID:
27134034
DOI:
10.1016/j.brainres.2016.04.070
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center