Send to

Choose Destination
Electrochim Acta. 2016 Apr 10;197:129-138.

Effects of Film Morphology and Surface Chemistry on the Direct Electrochemistry of Cytochrome c at Boron-Doped Diamond Electrodes.

Author information

Department of Chemistry, Michigan State University, East Lansing, MI 48824.


The effects of film morphology and surface termination on the direct electron transfer of horse heart cytochrome c on boron-doped ultrananocrystalline (B-UNCD) and microcrystalline (B-MCD) diamond thin-film electrodes were investigated. Quasi-reversible, diffusion-controlled cyclic voltammetric responses were observed on oxygen-terminated (atomic O/C ~0.015), but not hydrogen-terminated (atomic O/C ~0.02) diamond thin films. The effect of the surface termination was the same for both the nanostructured B-UNCD film with sp2-bonded carbon atoms in the grain boundaries and the well faceted B-MCD film with micron-sized grains and largely devoid of sp2 carbon. Stable cyclic voltammetric i-E curves were recorded with cycling for both oxygen-terminated films indicating the absence of protein denaturation and electrode fouling. The peak currents increased linearly with the square root of the scan rate and the protein concentration; both indicative of a reaction rate limited by semi-infinite linear diffusion of the protein. Similar heterogeneous electron-transfer rate constants were observed for oxygen-terminated B-UNCD (3.48 (± 1.25) × 10-3 cm/s) and B-MCD films (2.38 (± 0.72) × 10-3 cm/s). The results clearly reveal that the oxygen-terminated surface is more active for electron-transfer with this soluble redox protein than is the hydrogen-terminated surface. The film morphology does not influence the diffusion-controlled response of the redox protein.


cytochrome c; diamond electrodes; surface chemistry

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center