Format

Send to

Choose Destination
Plant Cell Physiol. 2016 Jun;57(6):1153-68. doi: 10.1093/pcp/pcw064. Epub 2016 Apr 15.

Identification, and Functional and Expression Analyses of the CorA/MRS2/MGT-Type Magnesium Transporter Family in Maize.

Author information

1
Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China.
2
Key Laboratory of Biology and Genetic Improvement of Maize in Southwest China of Agricultural Department, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China suzhi1026@163.com.

Abstract

Magnesium (Mg(2+)) is an essential macronutrient for plant growth and development, and the CorA/MRS2/MGT-type Mg(2+) transporters play important roles in maintaining Mg(2+) homeostasis in plants. Although the MRS2/MGT genes have been identified in two model plant species, Arabidopsis and rice, a comprehensive analysis of the MRS2/MGT gene family in other plants is lacking. In this work, 12 putative MRS2/MGT genes (ZmMGT1- ZmMGT12) were identified in maize and all of them were classified into five distinct subfamilies by phylogenetic analysis. A complementation assay in the Salmonella typhimurium MM281 strain showed that five representatives of the 12 members possess Mg(2+) transport abilities. Inhibition of ZmMGT protein activity using the hexaamminecobalt (III) (Co-Hex) inhibitor indicated that the ZmMGT protein mediated both low-affinity and high-affinity Mg(2+) transport in maize. A semi-quantitative reverse transcription-PCR (RT-PCR) analysis revealed that eight genes were constitutively expressed in all of the detected tissues, with one being specifically expressed in roots and three having no detectable expression signals. A quantitative RT-PCR analysis showed that some ZmMGT members displayed differential responses to Mg(2+) deficiency and aluminum (Al) stress. Furthermore, root growth inhibition and Mg(2+) accumulation analyses in two maize inbred lines, which conferred different levels of Al tolerance, revealed that ZmMGT proteins contributed to the Al resistance of the Al tolerance genotype. We hypothesize that ZmMGT family members function as Mg(2+) transporters and may play a role in linking Mg(2+) deficiency and Al stress responses. Our results will be valuable in a further analysis of the important biological functions of ZmMGT members in maize.

KEYWORDS:

Al tolerance; CorA; Expression analysis; MRS2/MGT; Magnesium transporter; Maize

PMID:
27084594
DOI:
10.1093/pcp/pcw064
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center