Format

Send to

Choose Destination
Biopolymers. 1989 Mar;28(3):741-61.

Hydration of B-DNA: comparison between the water network around poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) on the basis of Monte Carlo computations.

Abstract

A computational method is elaborated for studying the water environment around regular polynucleotide duplexes; it allows rigorous structural information on the hydration shell of DNA to be obtained. The crucial aspect of this Monte Carlo simulation is the use of periodical boundary conditions. The output data consists of local maxima of water density in the space near the DNA molecule and the properties of one- and two-membered water bridges as function of pairs of polar groups of DNA. In the present paper the results for poly(dG).poly(dC) and poly(dG-dC).poly(dG-dC) are presented. The differences in their hydration shells are of a purely structural nature and are caused by the symmetry of the polar groups of the polymers under study, the symmetry being reflected by the hydration shell. The homopolymer duplex hydration shell mirrors the mononucleotide repeat. The water molecules contacting the polynucleotide in the minor groove are located nearly in the plane midway between the planes of successive base pairs. One water molecule per base pair forms a water bridge facing two polar groups of bases from adjacent base pairs and on different strands making a "spine"-like structure. In contrast, the major groove hydration is stabilized exclusively by two-membered water bridges; the water molecules deepest in the groove are concentrated near the plane of the corresponding base pair. The alternating polymer is characterized by a marked dyad symmetry of the hydration shell corresponding to the axis between two successive base pairs. The minor groove hydration of the dCpdG step resembles the characteristic features of the homopolymer, but the bridge between the O2 oxygens of the other base-stacking type is formed by two water molecules. The major groove hydration is characterized by high probability of one-membered water bridges and by localization of a water molecule on the dyad axis of the dGpdC step. The found structural elements are discussed as reasonable invariants of a dynamic hydration shell.

PMID:
2706312
DOI:
10.1002/bip.360280305
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Wiley
Loading ...
Support Center