Format

Send to

Choose Destination
Angew Chem Int Ed Engl. 2016 May 4;55(19):5789-92. doi: 10.1002/anie.201601582. Epub 2016 Apr 5.

Tailoring Copper Nanocrystals towards C2 Products in Electrochemical CO2 Reduction.

Author information

1
Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1950, Sion, Switzerland.
2
Joint Center for Artificial Photosynthesis, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
3
Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, 94720, USA.
4
Department of Materials Science and Engineering, University of California, Berkeley, CA, 94720, USA.
5
Department of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne, 1950, Sion, Switzerland. raffaella.buonsanti@epfl.ch.

Abstract

Favoring the CO2 reduction reaction (CO2RR) over the hydrogen evolution reaction and controlling the selectivity towards multicarbon products are currently major scientific challenges in sustainable energy research. It is known that the morphology of the catalyst can modulate catalytic activity and selectivity, yet this remains a relatively underexplored area in electrochemical CO2 reduction. Here, we exploit the material tunability afforded by colloidal chemistry to establish unambiguous structure/property relations between Cu nanocrystals and their behavior as electrocatalysts for CO2 reduction. Our study reveals a non-monotonic size-dependence of the selectivity in cube-shaped copper nanocrystals. Among 24 nm, 44 nm and 63 nm cubes tested, the cubes with 44 nm edge length exhibited the highest selectivity towards CO2RR (80 %) and faradaic efficiency for ethylene (41 %). Statistical analysis of the surface atom density suggests the key role played by edge sites in CO2RR.

KEYWORDS:

colloidal chemistry; electrochemical CO2 reduction; nanocrystals; nanocubes; selectivity

PMID:
27059162
DOI:
10.1002/anie.201601582
Free full text

Supplemental Content

Full text links

Icon for Wiley Icon for eScholarship, California Digital Library, University of California
Loading ...
Support Center