Format

Send to

Choose Destination
Curr Oncol. 2016 Mar;23(2):S23-32. doi: 10.3747/co.23.3080. Epub 2016 Mar 16.

Anticancer mechanisms of cannabinoids.

Author information

1
Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain;; Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, Madrid, Spain;
2
Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Instituto de Investigación Hospital 12 de Octubre, Madrid, Spain;
3
Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University, and Instituto Universitario de Investigación Neuroquímica, Madrid, Spain;; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain;; Instituto Ramón y Cajal de Investigación Sanitaria, Madrid, Spain.

Abstract

In addition to the well-known palliative effects of cannabinoids on some cancer-associated symptoms, a large body of evidence shows that these molecules can decrease tumour growth in animal models of cancer. They do so by modulating key cell signalling pathways involved in the control of cancer cell proliferation and survival. In addition, cannabinoids inhibit angiogenesis and decrease metastasis in various tumour types in laboratory animals. In this review, we discuss the current understanding of cannabinoids as antitumour agents, focusing on recent discoveries about their molecular mechanisms of action, including resistance mechanisms and opportunities for their use in combination therapy. Those observations have already contributed to the foundation for the development of the first clinical studies that will analyze the safety and potential clinical benefit of cannabinoids as anticancer agents.

KEYWORDS:

Cannabinoids; angiogenesis; apoptosis; autophagy; cell proliferation; cell signalling; combination therapy

Supplemental Content

Full text links

Icon for Multimed Inc. Icon for PubMed Central
Loading ...
Support Center